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Abstract

Using a semantic definition of ontologies, we provide a
characterization of ontologies with respect to reusabil-
ity, merging, and integration. This definition also pro-
vides a model-theoretic approach to distinguishing on-
tologies from the domain theories which use them, and
the relationships among ontologies within an ontology
library.

Introduction

Ontological engineering was born with the promise of
reusability, integration, and interoperability. Of in-
creasing importance are the problems merging ontolo-
gies from different domains and translating among mul-
tiple ontologies from the same domain. However, to a
large degree, we have not yet delivered these promised
benefits. What we lack is a framework within which
people can develop and share reusable ontologies.

We need standards for specifying ontologies, in such
a way that reusability, merging, and integration can be
formally and unambiguously evaluated. Such a stan-
dard would involve the specification of the language of
the ontology, along with an axiomatization (model the-
ory and proof theory). The model theory provides a
rigorous mathematical characterization of the terminol-
ogy of the ontology. The proof theory provides axioms
for the interpretation of terms in the ontology.

The problem is that the meaning of the terminology
for many ontologies are in people’s heads. Any ideas
that are implicit are a possible source of ambiguity and
confusion, and are barriers to reusability, merging, and
integration. By specifying the model theory and proof
theory of the ontology, we can make this explicit. Dif-
ferent interpretations for the terminology can be given,
but one of these will be the intended interpretation that
guides the development of the axioms. The axiomatiza-
tion allows a characterization of these interpretations.
We can reason about the meaning of the terminology
of the ontologies using the models of the axioms.

With this approach, the focus of the ontology is not
only on the terms themselves, but also on their defini-
tions. We can include an infinite set of terms in our
ontology, but they can only be shared if we agree on

their definitions. It is the definitions which are being
shared, not simply the terms themselves.

Once the model theory and proof theory of the ontol-
ogy are in place, we can identify the semantic criteria
that an ontology must satisfy to enable the following:

• reusability

• merging (multiple ontologies from the same domain)

• structuring libraries of ontologies

• integration (ontologies from different domains)

A formal characterization of these notions would in-
volve a specification of the necessary conditions for an
ontology to satisfy the semantic criteria.

The Structure of Ontologies
An ontology is specified by a set of axioms in some for-
mal language. However, this is not an amorphous set;
some axioms are conservative definitions, while some
are sentences specifying constraints over objects in the
domain. This section presents an architecture which
attempts to make this structure explicit.

Foundational Theories and Definitions
We first consider the distinction between axioms for
defined terminology and axioms for terminology which
is intuitively primitive or undefined. 1

Definition 1 A sentence Φ is a definition with respect
to a theory T (equivalently, Φ is a definition in L(T ))
iff for any sentence Φ′ ∈ L(T ),

T ∪ {Φ} |= Φ′ iff T |= Φ′

In other words, a sentence is a definition with respect
to a theory T if any sentence that can be proven using
the definition can also be proven using T alone; intu-
itively, the sentence does not add any new entailments
to our theory. All models of the definition which are

1Throughout this paper, we will restrict ourselves to
ontologies with first-order axiomatizations. We will be
using the ontologies in the Appendix as examples; full
axiomatizations for these ontologies can be found at
http://www.ie.utoronto.ca/EIL/tove/toveont.html



restricted to L(T ) (the language of T ) are models of
the theory T .

For example, the sentences in the Appendix
are definitions for the relations (achieved ?f ?s),
(falsified ?f ?s) with respect to the situation cal-
culus as axiomatized by theory Tsitcalc in the Appendix.

Definition 2 A set of sentences Tdef is a definitional
extension with respect to a theory T iff every sentence
in Tdef is a definition with respect to T or a sentence
entailed by T .

The sentences in the TOVE Fluent Module T def
fluent in

the Appendix form a definitional extension with respect
to the foundational theory Tsitcalc.

Definition 3 Ldef (Tdef ) is the set of relations and
functions with definitions in the definitional extension
Tdef . We will refer to this as the lexicon of Tdef .

For example, the lexicon of T fluent
def is:

(achieved ?f ?s), (falsified ?f ?s)
Note that the theory T which is used to define termi-

nology in the definitional extension may itself contain
definitions. However, we will want to concentrate on
those theories with which we can provide definitions
for all terminology.

Definition 4 A foundational theory is a theory which
is not a definitional extension of any other theory.

Thus, a theory is a foundational theory iff it contains
no definitions. Since none of the relations, functions,
or constants in a foundational theory have definitions,
their intended interpretations are defined using only the
axioms in the foundational theories.

Examples of foundational theories are Tsitcalc and
TDo in the Appendix, which are axiomatizations of sit-
uation calculus and complex actions.

Domain Theories
To this point, the notions of foundational theory or def-
initional extension are not in themselves new, and there
is nothing to distinguish them from an arbitrary first-
order theory. However, ontologies are different from
arbitrary theories in that we intuitively think of ontolo-
gies as being the reusable portion of domain theories.
Of course, this begs the question of defining domain
theories, and it raises the perennial debate of the dif-
ference between ontologies and knowledge bases.

The reusability of an ontology arises because it is
invariant across the set of domain theories which use
the ontology. Intuitively, the ontology must satisfy two
criteria:

• Each domain theory has its own language which is an
expansion of the language of the ontology.

• Each model of a domain theory is a model of the
ontology, such that the language of the model is an
expansion of the language of the ontology.

First of all, there is a distinction between the lan-
guage of the foundational theories and definitional ex-
tensions on the one hand, and the language of the do-
main theories on the other. For example, in a process
ontology, there will be axiomatizations of such concepts
as activity, occurrence, and state; any domain theory
using this ontology will also introduce domain-specific
terminology such as pickup, fabricate part which de-
note activities. Thus, the language of the domain the-
ory is the language of the ontology expanded to include
the domain-specific lexicon of the particular domain
theory.
Definition 5 Given a foundational theory Tfoundation

and a set of definitional extensions Tdef , a domain-
specific lexicon (denoted Ldsl

i ), is a set of terms dis-
joint from L(Tfoundation ∪ Tdef ) which denote elements
in some domain.

The second criterion of reusability is the relationship
between the interpretation of the domain-specific lexi-
con and the models of the foundational theories of the
ontology. For example, the domain theories are not ar-
bitrary sets of sentences in the language of the domain-
specific lexicon, but are in some way constrained by the
axiomatization of the foundational theories.

Types and Models In order to provide a such se-
mantic characterization of the relationship between on-
tologies and domain theories, we resort to the notion of
types from model theory ([Hodges 93], [Goldstern and
Judah 95]). Types describe a model of a theory from
the point of view of a single element or a finite set of
elements.
Definition 6 Let M be a model for a language L. The
type of an element a ∈ M is defined as
typeM(a) := {φ : φ is a formula of L,M |= φ }

An n-type for a theory T is a set Φ(x1, ..., xn) of for-
mulae, such that for some model M of T , and some
n-tuple a of elements of M, we have M |= φ(a) for all
φ in Φ.

If t is an n-type, then a model M realizes t iff there
are a1, ..., an ∈ M such that

M |= t(a1, ..., an)

Informally, the type for an element in a model is a set
of formula which are satisfied by some set of elements
in the model. An n-type for a theory is a consistent set
of formulae (each of which has n free variables) which
is satisfied by a model of the theory.

Models of Domain Theories and Ontologies The
intuition is that the models of domain theories can be
specified using the models of the underlying founda-
tional theories and definitional extensions. To formalize
this intuition, we first define domain theories using the
types for the foundational theories, and then show that
this gives a complete characterization of the models of
domain theories as models of the foundational theories.
Thus, the intuition of the reusability of an ontology is
captured in its set of models.



Definition 7 Let Tfoundation be a foundational theory
and let Tdef be a definitional extension of Tfoundation.

A domain theory for Tfoundation ∪ Tdef is a boolean
combination of n-types for Tfoundation ∪ Tdef which are
realized in some model of Tfoundation ∪ Tdef with the
language L(Tfoundation∪Tdef )∪Ldsl, for some domain-
specific lexicon Ldsl.

Note that the models of the domain theories satisfy
the axioms of the ontology in Tfoundation ∪ Tdef , but
that the language of these models includes the domain-
specific lexicon. However, the theory does not include
arbitrary sentences in the domain-specific lexicon; it is
restricted to sentences which are types for the ontol-
ogy and which are realized in some model of the on-
tology. Thus, domain theories are formulae satisfied by
elements in different models of Tfoundation ∪ Tdef . We
will use the notation τn(Tfoundation ∪ Tdef ) to refer to
the set of n-types for the theory Tfoundation ∪ Tdef in
L(Tfoundation ∪ Tdef ) ∪ Ldsl, for some domain-specific
lexicon Ldsl.

For the foundational theory Tsitcalc, types are pre-
condition and effect axioms, and domain theories are
equivalent to basic action theories [Reiter 91]. For the
foundational theory TDo, types are complex action def-
initions, which specify the constraints under which sub-
actions occur.

We will now show how the notion of types for the
ontology formalizes the intuitions behind the criteria
for reusability.

Lemma 1 Let Tfoundation be a foundational theory and
let Tdef be a definitional extension of Tfoundation.

The models of a domain theory for Tfoundation∪Tdef

form a subset of the models of Tfoundation∪Tdef with the
language L(Tfoundation∪Tdef )∪Ldsl, for some domain-
specific lexicon Ldsl.

Lemma 2 Let Tfoundation be a foundational theory, let
Tdef be a definitional extension of Tfoundation, and let
Ldsl be a domain-specific lexicon.

Every consistent subset of models of Tfoundation∪Tdef

with the language L(Tfoundation ∪ Tdef ) ∪Ldsl is equiv-
alent to a set of models for some domain theory for
Tfoundation ∪ Tdef .

The next theorem follows easily from these two lem-
mas:

Theorem 1 Let Tfoundation be a foundational theory,
let Tdef be a definitional extension of Tfoundation, and
let Ldsl be a domain-specific lexicon.

Any sentence in a domain theory for Tfoundation ∪
Tdef is consistent iff it is satisfied by some set of models
of Tfoundation ∪ Tdef with the language L(Tfoundation ∪
Tdef ) ∪ Ldsl.

Corollary 1 Let Tfoundation be a foundational theory
and let Tdef be a definitional extension of Tfoundation.

Any sentence consistent with Tfoundation∪Tdef is en-
tailed by some domain theory for Tfoundation ∪ Tdef .

Since domain theories are formulae satisfied by ele-
ments in different models of Tfoundation∪Tdef , the types
of the ontology characterize the domain theories for the
foundational theories and definitional extensions of the
ontology.

Using Ontologies With this characterization of on-
tologies, we can define what it means for a theory to
use an ontology.

A theory (which can be a foundational theory, defini-
tional extension, or a domain theory) uses a definitional
extension iff the language of the theory uses relations
and functions with definitions in Tdef .
Definition 8 A theory T uses a definitional extension
Tdef iff Ldef (Tdef ) ⊆ L(T ).

A theory uses an ontology iff it uses the definitional
extensions of the theory and the sentences in the theory
satisfy the types for the ontology (i.e. the theory is a
domain theory for the ontology).
Definition 9 Let Tfoundation be a foundational the-
ory, let Tdef be a set of definitions with respect to
Tfoundation, and let τn(Tfoundation ∪ Tdef ) be a set of
n-types for Tfoundation ∪ Tdef .

Let Tonto be the set of sentences in Tfoundation∪Tdef∪
τn(Tfoundation ∪ Tdef ).

A theory T is a Tonto-theory iff T is a domain theory
for Tfoundation ∪ Tdef and T uses Tdef .

Merging Ontologies
We can also use this characterization of ontologies to
define various relationships among definitional exten-
sions necessary for characterizing the semantic criteria
for merging ontologies. Two ontologies can be merged
if they can be embedded into a third ontology; that is,
every model of each ontology can be embedded into a
model of the merged ontology.

In this paper we are restricting ourselves to charac-
terizing merging ontologys using only the lexicons of
the definitional extensions rather than directly using
the terminology of the foundational theories. In this
case, merging two ontologies is equivalent to showing
that there exists a third ontology which is able to pro-
vide definitions for the lexicon of the two embedded
ontologies.

A sentence can be expressed using the definitional
extension Tdef iff there is a sentence which uses only
the terminology of Tdef , and which we can prove is
equivalent to a sentence which uses terminology from
the foundational theory. In addition, the axioms in the
foundational theory alone are used to prove this equiv-
alence.
Definition 10 Let Tfoundation be a foundational the-
ory and let Tdef be a set of definitions with respect to
Tfoundation.

Let Φ be a definition in L(T ).
Φ can be expressed using Tdef iff there exists a sen-

tence Φdef ∈ Ldef (Tdef ) such that
Tfoundation ∪ Tdef |= Φ ≡ Φdef



The following example is taken from PSL translation
definitions between the PSL Ontology [Schlenof et al.
99] and an ontology for Ilog Schedule:

(forall (?occ1 ?occ2 ?d)
(<=> (endsAfterEnd ?occ1 ?occ2 ?d)

(exists (?occ3)
(and (subaction_occurrence ?occ1 ?occ3)

(subaction_occurrence ?occ2 ?occ3)
(after_end_delay ?occ1 ?occ2 ?occ3 ?d]

In this case, the relation endsAfterEnd is part
of the Ilog Schedule Ontology, while the relations
subaction occurrence and after end delay are part of
a definitional extension within the PSL Ontology. The
sentence demonstrates that endsAfterEnd can be ex-
pressed using the PSL Ontology.

It is sometimes not possible to show that a defini-
tion from one ontology can be expressed in another on-
tology; that is, we cannot write a sentence using the
first ontology which is logically equivalent to the def-
inition in another ontology. A weaker approach is to
show that any element in a class defined by a sentence
written using terminology in the definitional extension
Tdef realizes types for another ontology.

Definition 11 Let Tfoundation be a foundational the-
ory, let Tdef be a set of definitions with respect to
Tfoundation, and let τn(Tfoundation ∪ Tdef ) be the types
for Tfoundation ∪ Tdef .

Let Φ(x) be a definition in L(T ).
Φ(x) can be weakly expressed using Tdef ∪

τn(Tfoundation ∪ Tdef ) iff for any model M of
Tfoundation ∪ Tdef and any tuple of elements a ∈ M , if

M |= Φ(a)

then the type of a in M is a subset of τn(Tfoundation ∪
Tdef ).

For example, one ontology may have a definition for
the class of deterministic activities. The other ontology,
although it may not be able to express the definition of
deterministic, can guarantee that for any determinis-
tic activity, there exists a type for the ontology which
is equivalent to the activity definition. Thus, any do-
main theory using one ontology can be translated to a
logically equivalent domain theory using the other on-
tology.

Relationships among Ontologies

We can now apply these ideas to define various relation-
ships among the foundational theories and definitional
extensions of an ontology.

For foundational theories, we can simply use standard
notions from mathematical logic ([Goldstern and Judah
93], [Hodges 93]). For example, two theories may be
mutually inconsistent or independent of one another.
A particularly useful relationship is the following:

Definition 12 Let L,L+ be first-order languages with
L ⊆ L+, and let T, T+ be theories in L,L+. Then T+

is a conservative extension of T if for any sentence φ
of L,

T |= φ

iff
T+ |= φ

An example of this is the foundational theory
Tsitcalc ∪ TDo in the Appendix, which is a conser-
vative extension of Tsitcalc in which complex actions
are axiomatized. Notice that L(TDo) = L(Tsitcalc) ∪
{Do, atomic, subaction}, so that new relations are
added to the language.

This relationship is particularly useful in defining a
partial ordering over the set of foundational theories
within an ontology library. If T1 ⊂f T2 denotes that
T2 is a conservative extension of T1, then we can show
that any linear ordering of theories in ⊂f is a consistent
theory iff each theory in the ordering is consistent. We
will use this fact below as a means of structuring the
ontologies in a library.

Since definitional extensions are already sets of con-
servative extensions, we cannot order them using logical
entailment; rather, we can define an ordering relation
over a set of definitional extensions based on their rel-
ative expressiveness:
Definition 13 A definitional extension T 1

def is as ex-
pressive as the definitional extension T 2

def (written
T 1

def � T 2
def ) iff every sentence in Ldef (T 1

def ) can be
expressed using T 2

def .

A weaker relation simply considers an extension of
the language of the definitional extension:
Definition 14 A definitional extension T 1

def is a li-
brary extension of the definitional extension T 2

def iff
L(T 2

def ) ⊆ L(T 1
def ).

Note that for any definitional extension Tdef with
respect to a theory T , we have L(T ) ⊆ Tdef , since new
terminology is introduced in the extension.

Different definitional extensions may have equivalent
expressiveness; thus we may have different domain theo-
ries which nevertheless are satisfied by the same models
of the foundational theories.
Definition 15 A definitional extension T 1

def is a con-
servative library extension of the definitional exten-
sion T 2

def iff L(T 2
def ) ⊆ L(T 1

def ) and T 1
def � T 2

def ,
T 2

def � T 1
def .

Conservative library extensions provide a means for
adopting one definitional extension as a standard termi-
nology for a domain, but allow applications to use their
own terminology without sacrificing expressiveness or
preventing sharability.

Building an Ontology Library
If the set of axioms within an ontology are partitioned
into a set of modules within an ontology library, what
does it mean to say that a module in the library requires
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Figure 1: Part of the PSL Ontology Library

a foundational theory or a definitional extension? For
example, consider the set of modules in Figure 1, in
which foundational theories are depicted by oval boxes
and definitional extensions are depicted by rectangular
boxes. The dashed and solid lines indicate which mod-
ules are required by other modules within the library.
A dashed line indicates that a foundational theory re-
quires some other module, while a solid line indicates
that a definitional extension requires another module in
the library.

The complete set of axioms for a module which is a
foundational theory is the union of the set of founda-
tional theories required by the module. In this case,
the module is a conservative extension of each of the
foundational theories which it requires. For example,
consider the Interval Theory module. The dashed line
indicates that this theory requires the foundational the-
ory Complex Actions. The complete set of axioms for
Interval Theory is the union of the set of axioms in the
module itself in addition to the axioms in the modules
Complex Actions and Situation Calculus, so that it is a
conservative extension of both Situation Calculus and
Complex Actions.

If a foundational theory requires definitional exten-
sions, then the axioms of the module use terminology
defined in the definitional extensions. Note that this
means that the foundational theories required by the
definitional extension are also required by the module.

Suppose the module is a definitional extension. The
set of foundational theories required by the module
is characterized by the following: the lexicon of the
module has conservative definitions with respect to the
union of the theories required by the module. For ex-
ample, the Resource Roles module contains definitions

which are conservative with respect to the union of all
foundational theories in Figure 1.

The set of definitional extensions required by another
definitional extension is characterized by the following:
the definitions for the lexicon of the given module in-
cludes a lexicon whose definitions are found in the listed
extensions. Thus, a definitional extension requires an-
other definitional extension if it is a library extension.
For example, the Processor Actions module is a library
extension of the Resource Roles module.

Integrating Domain-Specific Ontologies

One major problem deals with the integration of generic
and domain-specific ontologies. With generic ontolo-
gies, there may be relations and functions which are
part of the domain-specific lexicon of a domain the-
ory, while in another ontology, these same relations and
functions will be axiomatized as part of the founda-
tional theories. This requires a characterization of the
relationship of the set of types for the two ontologies
for which Ldsl, the language of the domain theories for
both ontologies, is not equivalent.

An important case is where the foundational theories
of one ontology are an extension of the foundational the-
ories of the other. In particular, this considers ontolo-
gies where the foundational theories are extended by
axiomatizing relations, functions, and constants in Ldsl,
and the set of types for the ontologies is unchanged.

For example, consider the relationship between a
generic Product Ontology and its domain-specific ex-
tensions. In the generic ontology, each product has a
product definition theory, which specifies properties of
the product and how the product is assembled from its
components. Such a product definition is a type for the
Product Ontology and the lexicon of these theories is
Ldsl. The extended ontology would axiomatize the re-
lations and functions in this lexicon, such as connected
or assembly. Note that the set of types is unchanged –
each product still has a product definition theory; what
has been added is the axiomatization of new founda-
tional theories. Thus, the set of domain theories for the
ontology is unchanged, but the set of models of the do-
main theories is now determined by the new extended
foundational theories. We therefore need a formal char-
acterization of this relationship between foundational
theories and their extension for the axiomatization of
Ldsl.
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Appendix: Examples of Ontologies
Situation Calculus
(define-theory Basic_Situation_Calculus
:axioms

The initial situation S0 is not the successor of any situa-
tion.

(forall (?a ?s)
(not (= S_0 (do ?a ?s))))

Situations form a tree.

(forall (?a1 ?a2 ?s1 ?s2)
(=> (= (do ?a1 ?s1) (do ?a2 ?s2))

(and (= ?a1 ?a2)
(= ?s1 ?s2))))

No situation is earlier than the initial situation S0.

(forall (?s)
(not (< ?s S_0))

A situation ?s1 is earlier than the successor situation of
?s2 iff the action is poss in ?s2 and situation ?s2 is later than
?s1.

(forall (?a ?s1 ?s2)
(<=> (< ?s1 (do ?a ?s2))

(and (poss ?a ?s2)
(leq ?s1 ?s2))))

If two situations agree on state (which fluents hold in the
situation), then they agree on the extension of poss.

(forall (?s1 ?s2)
(=> (state_equiv ?s1 ?s2)

(poss_equiv ?s1 ?s2)))

If two situations agree on state (which fluents hold in
the situation), then they agree on state for all successor
situations in which the same action occurs.

(forall (?s1 ?s2)
(=> (state_equiv ?s1 ?s2)

(effects_equiv ?s1 ?s2))))

TOVE Fluent Module
A fluent ?f is achieved in a situation ?s iff it does not hold
in ?s but it does hold in the successor situation.

(defrelation achieved (?f ?s) :=
(exists (?a)

(and (holds ?f (do ?a ?s))
(not (holds ?f ?s)))))

A fluent ?f is falsified in a situation ?s iff it holds in ?s
but it does not hold in the successor situation.

(defrelation falsified (?f ?s) :=
(exists (?a)

(and (not (holds ?f (do ?a ?s)))
(holds ?f ?s))))

This relation defines the interval over which a fluent holds
– the fluent ?f is achieved in ?s1, falsified in ?s2, and it holds
for all situations between ?s1 and ?s2.

(defrelation fluent_interval (?f ?s1 ?s2) :=
(and (achieved ?f ?s1)

(falsified ?f ?s2)
(< ?s1 ?s2)
(forall (?s)

(=> (and (?s1 ?s)
(?s ?s2))

(holds ?f ?s)))))

Complex Actions
(define-theory Complex-Activity

If an activity occurs between two situations ?s1 and ?s2,
then there exists an atomic subactivity which occurs in ?s1,
and ?s2 is equal to the occurrence of an atomic subactivity.

(forall (?a ?s1 ?s2)
(=> (Do ?a ?s1 ?s2)

(and (exists (?a1 ?s3)
(and (atomic ?a1)

(subaction ?a1 ?a)
(= ?s2 (do ?a1 ?s3))))

(exists (?a2 ?s4)
(and (atomic ?a2)

(subaction ?a2 ?a)
(= ?s4 (do ?a2 ?s1))))))

If an activity occurs between two situations ?s1 and ?s2,
then there exist atomic subactiviti es which occur on legal
branches between ?s1 and ?s2.

(forall (?a ?s1 ?s2)
(=> (Do ?a ?s1 ?s2)

(exists (?a1 ?s3)
(and (atomic ?a1)

(subaction ?a1 ?a)
(leq S_0 ?s1)
(leq ?s1 (do ?a1 ?s3))
(leq (do ?a1 ?s3) ?s2)))))

For any atomic activity which occurs along a branch,
there exists an activity containing the atomic activity and
which also occurs along the branch (that is, the atomic ac-
tivity occurs during the activity that contains it.)

(forall (?a1 ?s1 ?s2 ?s3)
(=> (and (< ?s1 (do ?a1 ?s3))

(< (do ?a1 ?s3) ?s2))
(exists (?a)

(and (subaction ?a1 ?a)
(Do ?a ?s1 ?s2)))))


