
Process Specification Language For Project SCHEDULING information
exchange
Jinxing Cheng1, Michael Gruninger2, Ram D. Sriram3 and Kincho H. Law4
Abstract
Many project scheduling and management software systems are being employed in the construction industry.
Standards-based translation is one way to achieve interoperability. This study discusses the applicability of the
Process Specification Language (PSL) for exchanging project scheduling information among different
applications. PSL was initiated by the National Institute of Standards and Technology (NIST) and is emerging
as a standard exchange language for process information in the manufacturing industry. This paper explores how
PSL can be used for exchanging project scheduling information among software programs in project
management. Furthermore, we investigate how PSL could be utilized to reason about potential conflicts and to
perform consistency checking on project scheduling information.

Keywords
Process Specification Language (PSL), information exchange, consistency checking, project management

1 PhD Student, Civil and Environmental Engineering Department, Stanford University, Stanford, CA
94305-4020, email: cjx@stanford.edu

2 Project Leader, Ontology Development, ISO Standardization, National Institute of Standards and
Technology, Gaithersburg, MD 20899-0001, USA, email: michael.gruninger@nist.gov

3 Group Leader, Design Process Group, Manufacturing Systems Integration Division, National Institute
of Standards and Technology, Gaithersburg, MD 20899-0001, USA, email: sriram@cme.nist.gov

4 Professor, Civil and Environmental Engineering Department, Stanford University, Stanford, CA
94305-4020, email: law@cive.stanford.edu

1 Introduction
As the use of information technology increases in the construction industry, the need for software applications
to interoperate has become increasingly important. With the variety of construction applications that can be
employed in a construction project, large volumes of project information are created from different sources.
Different members of a project team may use different application software for disparate purposes; examples
may include Primavera Project PlannerTM (P3) or Microsoft ProjectTM for scheduling, Vite SimVisionTM for
project organization, Timberline’s Precision EstimatingTM for estimating cost, and 4D Viewer (McKinney and
Fischer 1998) for the view of construction progress. It is not unusual that project data are re-entered from one
application to another.
To achieve interoperability, computer applications need to agree on a standard ontology. An ontology is an
explicit specification of a topic that includes a set of terms and the relationships among these terms (Guarino
1997). Ontologies can be represented in many ways. Examples include graphical notations (e.g. UML) and
logic-based representations (e.g. KIF). Currently, many product models and data standards, such as STEP (ISO
1994), IFC (IAI 1997), and aecXML (IAI 2002), exist to provide interoperability among different applications
in the AEC domain. Examples include: (1) a product model for roofing systems developed using STEP (Vanier
1998); (2) the CIMsteel project, in which product modeling and data exchange for the construction steelwork
industry was accomplished with STEP (Garas and Hunter 1998); (3) the use of Unified Modeling Language
(UML) to represent product and process information in steelwork construction projects (Anumba et al. 2000);
and (4) an IFC-based model to exchange information about maintenance management (Hassanain et al. 2000).
Most of these existing standards focus, however, more on product data than on process information.
Standards for business process and workflow information have also been proposed to achieve interoperability in
workflow management. For example, the Business Process Modeling Language (BPML) was
proposed as a meta-language to model business processes (Arkin 2002). The Workflow
Management Coalition (WFMC) has developed standards to enable the interoperability among multiple
workflow software products (Fischer 2002). However, these languages cannot be directly applied for the
exchange of process information in manufacturing or construction applications. The Process Specification
Language (PSL) was designed specifically for exchanging process information among manufacturing
applications (ISO 2003) and is currently undergoing a standardization process at the international level. In this
paper, we evaluate the effectiveness of using PSL for the exchange of process information in construction
management applications.
In addition to interoperability, maintaining the consistency of project information also poses a challenge since
project information can come from various sources. In a complex project, a tremendous amount of information
is being exchanged among the different project participants and software applications. Controlling the
information flow and ensuring the validity of information exchanged between computer applications are among
the challenges in project management. For example, in a distributed engineering environment, one project team
may choose to use Primavera Project PlannerTM, while Microsoft ProjectTM is preferred by another for project
scheduling. With multiple project participants utilizing different software applications, conflicts may arise due
to partial changes, miscommunications, etc. Presently, there is no systematic approach to check the consistency
of the scheduling information from different applications.
Few solutions have been considered for solving the data inconsistency problem. For example, a central database
can be used as the common repository for different applications to maintain data persistency and consistency,
such as the approach adopted for the Collaborative Dynamic Project Management (CDPM) system (Penã-Mora
and Dwivedi 2002). However, this centralized database approach only partially solves the consistency problem
in that while it eliminates version conflicts, it does not address any logic conflicts. Heuristic approaches have
also been proposed, such as the 4D WorkPlanner Time-Space Conflict Analyzer (4D TSConAn), for
categorizing and detecting spatial conflicts (Akinci et al. 2002). It is difficult, however, to generalize such
heuristic approaches to handle the conflicts that are outside the defined domain problem.
The Process Specification Language (PSL) provides a logic-based representation, which is not only useful for
the exchange of process information between application software, but also potentially useful for discovering
and resolving conflicts. This study evaluates the applicability of PSL as an interchange language for
2 4

construction project management applications, and explores the mechanism of using PSL to maintain the
consistency of the project knowledge base.
This paper is organized as follows: Section 2 briefly introduces PSL and discusses the motivation and the
major components of PSL. Mapping the concepts between PSL and project management applications is
discussed in Section 3. Section 4 describes the parser and the wrappers developed for the exchange of project
scheduling information using PSL. Section 5 discusses the potential use of PSL for consistency checking using
a logic-based reasoning tool. Examples on information exchange and consistency checking are given in Section
6 to demonstrate the current prototype environment. Finally, Section 7 summarizes the results described in this
paper.
2 Introduction to PSL
Representing activities and the constraints on their occurrences is an integral aspect of commonsense reasoning,
particularly in project management, enterprise modeling, and manufacturing. In addition to the traditional
concerns of knowledge representation and reasoning, the need to integrate software applications in these areas
has become increasingly important. However, interoperability is hindered because the applications use different
terminology and representations of the domain. These problems arise most acutely for systems that must
manage the heterogeneity inherent in various domains and integrate models of different domains into coherent
frameworks. For example, such integration occurs in business process reengineering, where enterprise models
integrate processes, organizations, goals, and customers. Even when applications use the same terminology,
they often associate different semantics with the terms. This clash over the meaning of the terms prevents the
seamless exchange of information among the applications. Typically, point-to-point translation programs are
written to enable communication from one specific application to another. However, as the number of
applications has increased and the information has become more complex, it has been more difficult for software
developers to provide translators between every pair of applications that must cooperate. What is needed is
some way of explicitly specifying the terminology of the applications in an unambiguous fashion.
The Process Specification Language (PSL) has been designed to facilitate correct and complete exchange of
process information among manufacturing systems (Schlenoff et al. 1999b, Menzel and Gruninger 2001)5.
Included in these applications are scheduling, process modeling, process planning, production planning,
simulation, project management, workflow, and business process reengineering. This section gives a brief
overview of PSL; detailed description of PSL can be found in the PSL specification (ISO 2003).
The PSL Ontology is a set of first-order theories organized into PSL-Core and a partially ordered set of
extensions. All extensions within PSL are consistent extensions of PSL-Core, although not all extensions
within PSL need be mutually consistent. Also, the core theories need not be conservative extensions of other
core theories. A particular set of theories is grouped together to form the Outer Core; this is only a pragmatic
distinction, since in practice, they are needed for axiomatizing all other concepts in the PSL ontology. The
relationships among the core theories are depicted in Figure 1.
The purpose of PSL-Core is to axiomatize a set of intuitive semantic primitives that is adequate for describing
the fundamental concepts of manufacturing processes. Consequently, this characterization of basic processes
makes few assumptions about their nature beyond what is needed for describing those processes, and the Core is
therefore rather weak in terms of logical expressiveness. Specifically, the Core ontology consists of four disjoint
classes: activities, activity occurrences, timepoints, and objects. Activities may have zero or more occurrences,
activity occurrences begin and end at timepoints, and timepoints constitute a linearly ordered set with endpoints
at infinity. Objects are simply those elements that are not activities, occurrences, or timepoints.

5 PSL has been accepted as project ISO 18629 within the International Organisation of Standardisation, and as
of October 2002, part of the work is under review as a Draft International Standard. The complete set of axioms
for the PSL Ontology can be found at {http://www.mel.nist.gov/psl/psl-ontology/}.

3 3

Activity
Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

Figure 1. Core Theories of the PSL Ontology
PSL-Core is not strong enough to provide definitions of the many auxiliary notions that become necessary to
describe all intuitions about manufacturing processes. To supplement the concepts of PSL-Core, the ontology
includes a set of extended theories that introduce new terminology. These Outer Core theories provide the
logical expressiveness to axiomatize intuitions involving concepts that are not explicitly specified in PSL-Core.
The basic Outer Core theories include Occurrence Trees, Discrete States, Subactivities, Atomic Activities,
Complex Activities, and Activity Occurrences. An Occurrence Tree is the set of all discrete sequence of activity
occurrences. Discrete States denote states and their relationships to activities. Subactivities are defined to
represent an ordering for aggregations of activities. Atomic Activities are defined to capture concurrent
aggregation of primitive activities. Complex Activities characterize complex activities and the relationship
between occurrences of an activity and occurrences of its subactivities. Activity Occurrences ensure that
complex activity occurrences correspond to branches of activity trees. The remaining core theories in the PSL
Ontology include: Subactivity Occurrence Ordering (axiomatizing different partial orderings over subactivity
occurrence), Iterated Occurrence Ordering (axioms necessary for defining iterated activities), Duration
(augmenting PSL-Core with a metric over the timeline), and Resource Requirements (which specifies the
conditions that must be satisfied by any object that is a resource for an activity).

4 4

Table 1. Definitional extensions of PSL

Definitional Extensions Core Theories Example Concepts

• Activity Extensions • Complex Activities • Deterministic/nondeterministic
activities • Concurrent activities •
Partially ordered activities

• Temporal and State
Extensions

• Complex Activities • Discrete States • Preconditions • Effects • Conditional
activities • Triggered activities

• Activity Ordering and
Duration Extensions

• Subactivity Occurrence Ordering •
Iterated Occurrence Ordering • Duration

• Complex sequences and branching •
Iterated activities • Duration-based
constraints

• Resource Role Extensions • Resource Requirements • Reusable, consumable, renewable,
and deteriorating resources

There is a further distinction between core theories and definitional extensions. Core theories introduce
primitive concepts, while all terminology introduced in a definitional extension have conservative definitions
using the terminology of the core theories. The definitional extensions are grouped into parts according to the
core theories that are required for their definitions. Table 1 gives an overview of these groups together with
example concepts that are defined in the extensions. The definitional extensions in a group contain definitions
that are conservative with respect to the specified core theories; for example, all concepts in the Temporal and
State Extensions have conservative definitions with respect to both the Complex Activities and Discrete States
theories.
3 PSL for Project Management Applications
PSL was designed to exchange process information among manufacturing applications. In a pilot
implementation at NIST, PSL was successfully used to exchange manufacturing process information between
the IDEF3-based ProCAP and the C++ based ILOG Scheduler (Schlenoff et al. 1999a). Although PSL was
initially created mainly for the manufacturing industry, the core theories can be extended to construction project
management and scheduling applications.
In our research, we first selected a typical project management tool, Primavera Project PlannerTM (P3), as the
benchmarking application to help define the core concepts for construction project management. Primavera P3 is
a software tool for organizing, planning, and managing activities, projects, and resources. The following
discussion focuses on the semantic mapping between Primavera P3 and PSL.
To achieve interoperability using PSL, semantic mapping is needed for various reasons. The same term may
have different meanings in different applications and universes of discourse. For example, the term successor in
PSL means that there are no other activities occurring between the two activities; however, in P3 the term does
not have such an implication and only indicates that one activity cannot start before the other. On the other
hand, the same concept in different applications may be represented differently using different terms. For
5 3

instance, the terms Successor and Predecessor in P3 are used to describe the dependency relationships; in PSL,
however, other terms, such as after-start and after-start-delay, are used to describe the same concepts. To
exchange project scheduling information, we first need to map the concepts in different applications onto formal
PSL ontology.
A typical construction project consists of a set of activities and the dependency relationships among the
activities. Construction activities can generally be categorized into one of three types: production, procurement,
and administrative activities. Each activity has attributes associated with it, such as start date, duration, etc.
Dependency relationships describe the constraints defining the order in which the activities must occur to
complete the project (Gould 2002). There are four typical dependency relationships: Finish to Start, Finish to
Finish, Start to Start, Start to Finish. Figure 2 depicts the dependency relationships and their respective
definitions. For example, the “Finish to Start” relationship between activity A and activity B means that B
starts only after A completes, and the “Finish to Finish” relationship indicates that A needs to complete before
B does.
Each activity in a project schedule can be mapped onto an activity occurrence in PSL, while the timepoint is
used to specify the beginning and the end points of an activity occurrence. PSL extensions provide terms to
describe the dependency relationships among activities. For example, the term before-start in PSL corresponds
to the “Start to Start” relationship, while the lag in the “Start to Start” relationship corresponds to the PSL term
before-start-delay. The PSL expression (before-start occ1 occ2 a3) specifies that both occ1 and occ2 are
subactivity occurrences of the activity a3, while the beginning timepoint of occ1 is earlier than the beginning
timepoint of occ2. In addition, the expression (before-start-delay occ1 occ2 a3 d) implies that occ2 begins at
least d timepoints after occ1 begins. Table 2 lists the terms that are used in Primavera P3 and PSL to describe
activities and dependency relationships.
In addition to activity and relationship information, resource allocation also plays an important role in project
scheduling. A project schedule is not completely specified unless the necessary resources are allocated.
Resources include people, material, and equipment required to finish the work. Resources can be mapped onto
the lexicon resource in PSL, which identifies the object required by an activity.

A B

(a) Finish to Start

A B

(b) Finish to Finish

A B

(c) Start to Start

A B

(d) Start to Finish
Figure 2. Dependency Relationships Among Activities
Table 2. Mapping of Activities and Dependency Relationships

6 4

Concepts in Primavera P3 PSL terms

Activity Activity occurrence

Predecessor, Successor Activity occurrence, before-start, before-finish, after-start, after-finish

Start to Start before-start

Start to Finish before-finish

Finish to Start after-start

Finish to Finish after-finish

Dependency Lag before-start-delay, before-finish-delay, after-start-delay, after-finish-delay

Semantic mapping between PSL and project management applications is not always straightforward. For
example, the total float concept in Primavera P3 cannot be directly mapped to a corresponding PSL term. In
Primavera P3, total float indicates the maximum amount of time a task can be delayed without postponing the
whole project. To express the total float concept, we need a set of PSL expressions. For example, assuming
that in Primavera P3 there is a project (proj1) with the scheduled completion date on March 10, 2003, the
activity A is scheduled to finish on October 7, 2002 with a total float of 3 days. To express the total float
concept in the above example, we need to use the following PSL expressions.

(=> (beforeEQ (endof A) 10/10/2002) (beforeEQ (endof proj1) 03/10/2003))
(=> (before 10/10/2002 (endof A)) (before 03/10/2003 (endof proj1)))

Here October 10, 2002 is the completion date of the activity A if it is delayed by exactly 3 days. The first PSL
expression implies that if A is delayed by no more than 3 days, the project will be completed on time with the
end date of the project remains to be March 10, 2003. The second PSL expression indicates that if the end date
of activity A is beyond October 10, 2002, the project completion date will then be postponed beyond March 10,
2003.
Generally speaking, PSL has more expressive power than many project management tools, including
uncertainty, conditioning, probability, universal and existential relations, etc. As an example, the following
PSL expressions can be used to indicate that a construction activity may require different resources depending
on the result of other activities.

 (activity-occurrence pourConcrete)
 (doc pourConcrete “Pouring Concrete”)
 (=> (beforeEQ (endof formColumns) 11/20/2002) (demand constructionWorker

pourConcrete 3))
 (=> (before 11/20/2002 (endof formColumns)) (demand constructionWorker pourConcrete 6))
 (after-start pourConcrete formColumns proj1)

Here, the activity pourConcrete requires different resources depending on its predecessor formColumns. If the
activity formColumns is not completed before November 20, 2002, then the activity pourConcrete would
require more construction workers. This conditioning expression, however, cannot be represented or encoded

7 3

using project management tools that primarily handle deterministic scheduling.
Let’s look at a mapping example between Primavera P3 and PSL. Figure 3 shows the major activities involved
in the schedule of a typical residential building project. The project schedule is shown as a PERT (Primavera's
Easy Relationship Tracing) chart from Primavera Project PlannerTM. In the project, the activity “Frame House”
needs to finish before either the activity “Frame Roof” or “Install HVAC” can start. After the completion of
these two activities, the activity “Install Drywall” can proceed. Figure 4 shows the ASCII outputs of the
scheduling and resource information of the project plan from Primavera P3. For example, as shown in Figure
4, the activity “Frame House” starts on August 5, 2002 and lasts 15 days, while the activity “Install Drywall”
needs the resource “drywall” to proceed.
The scheduling information in Primavera P3 can be described precisely using PSL. Figure 5 shows portion of
the PSL expressions for the example project. Here, ResProject is the project identifier of the example residential
building project. The PSL expressions (after-start ID100 ID110 ResProject) and (after-start-delay ID100 ID110
ResProject 0) specify that the activity ID110 (“Frame Roof”) needs to start after the completion of the activity
ID100 (“Frame House”) with no lag between the two activities. The PSL expression (available drywall ID130)
indicates that the resource drywall is available for the activity ID130 (“Install DryWall”), while the PSL
expression (demand drywall ID130 2220) specifies that the activity ID130 requires 2200 sqft of drywall.
4 Information Exchange using PSL
To exchange project scheduling information among different project management applications, we need to
develop wrappers for each application. Figure 6 shows the wrappers currently prototyped for information
exchange between a variety of application software, including Primavera Project PlannerTM (P3), Vite
SimVisionTM, Microsoft ProjectTM, and 4D Viewer, using PSL. The PSL wrappers are used to retrieve and
transfer information between the applications.

8 4

Figure 3. Example Dependency of a Scheduling Chart in Primavera P3

 ACT TITLE ES EF TF RD
---------- --------------- -------- -------- ----- ---- ID100
Frame House 5AUG02 23AUG02 0 15

 ID130 Install Drywall 5SEP02 2OCT02 0 20 …… ACT
RES RUT QTC QAC

 ---------- -------- ---- ------------- ------------ ID130
DRYWALL sqft 2200.00 2200.00 ……

Figure 4. Schedule

and Resource Information from Primavera P3

9 3

 (and (activity-occurrence ID100) (doc
ID100 "Frame House") (beginof ID100 08/05/
2002) (duration-of ID100 15) (after-start
ID100 ID110 ResProject) (after-start-delay
ID100 ID110 ResProject 0) ) (and
(resource drywall)

 (available drywall ID130) (demand drywall
ID130 2220))

Figure 5. PSL Expressions For the

Example Chart in Primavera P3

PSL

PSL
Wrapper

PSL
Wrapper

PSL
Wrapper

PSL
Wrapper

Primavera
P3

Vite
SimVision

MS
Project

4D
Viewer

Figure 6. PSL in the Information Exchange

PSL

Convert to PSL format PSL parser

Map PSL ontology into concepts in
individual software

Retrieve information from applications

P3: Primavera Automation Engine
MS Project: VBA
Vite SimVision: JDBC

Map concepts into formal PSL ontology

Feed information into applications

P3: Primavera Automation Engine
MS Project: VBA
Vite SimVision: JDBC
4D Viewer: Plain text

Primavera
P3

MS
Project

Vite
SimVision 4D Viewer

Figure 7. PSL Wrappers
There are three basic steps involved in exchanging project information using PSL. The first step is to retrieve
the project information from an application and to update the project model. Semantic mapping is then

10 4

performed to translate between the formal PSL ontology and the concepts in the project management tools.
Finally, the project data are syntactically translated between PSL files and the applications.
The information exchange process is depicted in Figure 7. To map the information from applications to PSL,
different wrappers have been implemented for various project management applications. In addition, these
wrappers are also used to map the information from PSL to the applications.
After mapping the concepts in Vite SimVisionTM onto PSL, we use Java Database Connectivity (JDBC) to
parse the relevant information stored in the Access database created by Vite SimVisionTM, translate the
information into PSL, and create a PSL file. For the PSL to Vite SimVisionTM translation, the information in
the PSL file is parsed and rewritten into VNB (Access database) file format.
For Primavera P3, the Primavera Automation Engine (RA) is employed. The RA is a set of object-oriented,
OLE 2.0-based API, which allows object-oriented programming access to the P3 scheduling engine and other
applications. We use RA to communicate with P3, such as retrieving project scheduling information from P3
and transferring project scheduling information to P3.
For Microsoft ProjectTM, VBA (Visual Basic for Application) is employed. The process here is very similar to
the communication protocols for Primavera P3.
For 4D Viewer (McKinney and Fischer 1998), the scheduling information from the PSL file is retrieved and
converted into ASCII format required by the 4D Viewer.
A PSL parser has also been developed to read the project scheduling information from PSL files. One
simplification we made in the PSL parser is that PSL sentences are expressed as relations rather than functions.
In PSL, each function has a unique value; for example, in the PSL expression (endof A), the activity A can
only have one unique completion date. In contrast, the value of a relation is either true or false; furthermore,
relations can have disagreement on the last element. For example, the relations (before t1 t2) and (before t1 t3)
differ. As a result, every function can be expressed as an equivalent relation with axioms that ensure the
uniqueness of values, while not every relation can be expressed as a function. Therefore, using relations is
usually more convenient than using functions and minimizes unnecessary confusions and complexities in
implementing the PSL parser.
It should be noted that only the information that is common to the applications can be exchanged. As shown in
Figure 8, Primavera Project PlannerTM (P3) includes scheduling, resource, and cost information, while Vite
SimVisionTM provides scheduling, resource, communication, and organizational information. Scheduling and
resource information, which is common to both applications, can be exchanged through PSL. However, not all
scheduling and resource information is exchanged between these two applications, since the granularity of such
information may be different. For example, Primavera P3 includes more detailed scheduling information than
Vite SimVisionTM; in other words, not all scheduling information in Primavera P3 is needed by and
transferred to Vite SimVisionTM.
The PSL parser developed so far can only deal with parsing predefined terms in PSL. We are currently
investigating the possibility of building a generic PSL parser using JavaCC (Java Compiler Compiler (SUN
2002)). The generic PSL parser can read a grammar specification and convert it to a Java program that can
recognize matches to the grammar.

Scheduling

Resource

Cost
......

Scheduling

Resource

Communication

Organiztion
......

Primavera P3 PSL Vite SimVision

Figure 8. Exchange Information between Primavera P3 and Vite SimVision through PSL

11 3

5 Consistency Checking using PSL
Conflicts can occur from time to time during the course of a construction project. Design changes, unexpected
weather conditions, labor actions, and procurement delays are all common bases for conflicts. In a distributed
engineering environment, conflicts can occur more often due to partial changes and miscommunications. For
example, a subcontractor may change its sub-schedule without realizing the potential impact on other project
participants.
PSL can be used to check for consistency and to resolve some of the conflicts. We can use PSL to check the
logic conflicts in the project base, where information comes from heterogeneous applications. For example, as
illustrated later, our initial investigation shows that it is possible to detect version conflicts and cyclic
dependency relationships between Primavera Project PlannerTM and Microsoft ProjectTM. With the conflicts
found, it will be relatively easy to trace back to the sources of the conflicts. In addition, project personnel can
check assumptions using PSL. For instance, suppose one would like to find out whether an activity can start on
a specific date, say on November 15, 2001 without causing conflicts with other activities or prolonging the
project. With PSL, we can add one piece of knowledge, which in PSL format would be (beginof activity 2001-
11-25), into the PSL knowledge base, and reason on the whole knowledge base. If no conflict is found during
the reasoning, project personnel can infer that the assumption is reasonable; in other words, in this example, the
activity can start on November 15, 2001.
Figure 9 depicts the basic process for detecting the conflicts or inconsistency of project information in the
prototype implementation. PSL wrappers are employed to retrieve project information from different
applications. In this work, we employ a theorem-prover---Otter (Organized Techniques for Theorem-proving and
Effective Research)---as the logic reasoning tool (McCune 1994, Wos and Pieper 2000). Otter infers conclusions
from given hypothesis and takes two types of input: logic clauses and first order logic sentences. Internally,
Otter converts all inputs into logic clauses and applies inference rules to all possible logic clauses to infer new
facts or conclusions. To utilize Otter, a translator has been built to convert PSL files and PSL axioms into first
order logic sentences that Otter can understand.
The reasoning process using Otter can be summarized in Figure 10. Otter first infers new conclusions from the
existing knowledge base. For the new knowledge, Otter rewrites it and checks whether it is subsumed by the
existing knowledge. If not, the new knowledge will be added to the existing knowledge base; otherwise, it will
be deleted. Usually, the reasoning process will stop either when Otter finds conflicts, or when no more
conclusions can be inferred.

12 4

Primavera
P3

Microsoft
Project

Vite
SimVision

PSL Files

Otter Files

PSL Axioms

4D Viewer

Otter
(Reasoning Tool)

PSL to Otter
Translator

PSL
Wrapper

Reasoning Results

PSL
Wrapper

PSL
Wrapper

PSL
Wrapper

Figure 9. Consistency Checking Using PSL
Project knowledge base
Ÿ PSL Core, PSL Outer Core, and PSL Extensions
Ÿ Project Specific Knowledge

Knowledge
to be added

Knowledge
to be deleted

Infer new
knowledge

Rewrite
Knowledge

Update
knowledge

base

Figure 10. Simplified Reasoning Process in Otter
The knowledge base includes two main parts: (1) axioms and definitions from PSL Core, PSL outer core, and
PSL Extensions; and (2) facts of individual project from heterogeneous sources. The reasoning among the
axioms and definitions can significantly slow the reasoning process without producing essential results. We
therefore partition the inputs into two lists: the axioms on the usable list and the project specific facts on the
SOS (set of support) list. The performance of Otter can be significantly improved by separating the project
specific knowledge and the PSL axioms/definitions. For example, in the chip design project to be presented in
Section 6.2, Otter takes only 3 seconds to complete the reasoning, as compared to several hours without
partitioning.
6 Demonstrations
This section presents several examples to demonstrate the concepts described in this paper. In Section 6.1 we
show two examples which illustrate the use of PSL for information exchange. Section 6.2 shows an example
that demonstrates how PSL can be used for consistency checking.
6.1 information exchange using PSL
6.1.1 Example 1: A Chip Design Scenario
We select a sample project from Vite SimVisionTM to test PSL for the exchange of project scheduling
information. A Vite SimVisionTM project is composed of a traditional CPM diagram and additional links
13 3

showing failure dependence, reciprocal information, and management structure. The example scenario, as shown
in Figure 11, is to design and fabricate a chip set for a new personal digital assistant (PDA) product. There are
12 activities in this project. Among the 12 activities there are three milestone activities: (1) Start Project, (2)
Ship Tapes to Foundry, and (3) Fab, Test and Deliver. The activity “Design_Coordination” maintains the
overall control of the project.
Using PSL, we successfully exchange scheduling information among Vite SimVisionTM, Primavera Project
PlannerTM (P3), and Microsoft ProjectTM. Figure 12 shows some selected logic sentences from the PSL file
particular to this project. These logic sentences specify the properties of the project and activities in the project.
For example, the expression (beginof TUTO 9/18/1998) specifies that the TUTO project starts on 9/18/1998.
The expression (after-start ID190 ID200 TUTO) specifies that the task ID190 should finish before the task
ID200 starts.
Figures 13 to 15 illustrate the generated schedule in Vite SimVisionTM, P3, and Microsoft ProjectTM. Figure
13 is the original Gantt chart of the sample project in Vite SimVisionTM. Figures 14 and 15 show the
regenerated project schedule in P3 and Microsoft ProjectTM, respectively. As shown in the figures, project
scheduling information is successfully exchanged among these three applications. Activities have the same start
date and duration in all three applications. The critical paths are also the same in all three applications.
In this example scenario, the scheduling information from Vite SimVisonTM is retrieved and converted into a
PSL file. The information in the PSL file is then parsed and used to regenerate the project schedule in
Primavera Project PlannerTM and Microsoft ProjectTM. The successful information exchange among these
applications shows the potential of PSL as an interchange standard in construction project management.

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL

FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

PartitionChip
& Floor

Planning

Generate Test
VectorsShip Tapes

to Foundry

Design_Coordination

Figure 11. Original CPM Diagram in Vite SimVision

(and (project TUTO) (doc TUTO "TUTORIAL Project") (beginof
TUTO 9/18/1998) (subactivity-occurrence ID100 TUTO) ……) (and
(activity-occurrence ID190) (doc ID190 "PartitionChip & Floor
Planning") (beginof ID190 10/19/1998)

(duration-of ID190 42) (after-start ID190 ID200 TUTO) (after-start-
delay ID190 ID200 TUTO 0) ……)

Figure 12. Sample PSL File

14 4

Figure 13. Original Gantt Chart in Vite SimVision

Figure 14. Regenerated Schedule in Primavera Project Planner using PSL

Figure 15. Regenerated Schedule in Microsoft Project using PSL
6.1.2 Example 2: Mortenson Ceiling Project
We demonstrate the scalability and applicability of PSL as an interchange standard through the Mortenson
Ceiling Project, which is part of the Walt Disney Concert Hall, built by Mortenson Construction and designed
by Frank O. Gehry & Associates. There are 191 activities and 459 dependency relationships in this example
project. We use PSL as the data standard to exchange project scheduling information among Primavera P3,
Microsoft ProjectTM, and 4D Viewer. The PSL file of this project contains more than 2000 logic sentences.
Figures 16 to 18 show selected results of this example demonstration. Figure 16 is the original Gantt chart of
the ceiling project in P3. Figure 17 shows a snapshot of the construction progress in 4D Viewer on March 25,
2001. The scheduling information originally in Primavera Project PlannerTM (P3) is successfully transferred to
Microsoft ProjectTM using PSL, as shown in Figure 18.

15 3

Figure 16. Original Schedule in Primavera P3

Figure 17. Model in 4D Viewer Taken on March 25, 2001

Figure 18. Regenerated Gantt Chart in Microsoft Project using PSL

To further illustrate the information exchange process, we altered the duration of activity 18T1-33201 from 1
day to 40 days in Microsoft ProjectTM, as shown in Figure 19. The regenerated information is exchanged and
displayed using Primavera Project PlannerTM in Figure 20 and 4D Viewer in Figure 21. The successful
information exchange on this project demonstrates the scalability, applicability, and robustness of PSL as an
interchange standard.

16 4

Figure 19. Updated Project Schedule in Microsoft Project

Figure 20. Updated Project Schedule in Primavera P3

Figure 21. Updated Model in 4D Viewer Taken on March 25, 2001
6.2 Consistency Checking of project schedules
To test the use of PSL for consistency checking purpose, we use the same chip design scenario, as shown in
Figure 11. For this example, which includes the design and fabrication of a chip set for a new personal digital
assistant (PDA) product, the project involves managing design tasks as well as the foundry’s layout, testing,
and manufacturing tasks. Here we assume that there are two groups working on the project: one primarily
responsible for the foundry’s layout, and the other primarily responsible for testing and manufacturing tasks.
Assuming that the two groups employ different application software, they work on the schedule independently
but collaboratively. In addition, let’s assume that group 1 uses Primavera P3 to create the detailed schedule.
Moreover, in this group’s schedule the “Eng Layout & Physical Ver’n” task is assumed to start after the
“General Test Vector” task. Figure 22 shows the group 1’s schedule in Primavera P3, and Figure 23 shows the
CPM diagram.

17 3

For group 2, Microsoft ProjectTM is employed as the project management tool. Furthermore, the task
“PartitionChip & Floor Planning” is split into two tasks: task “PartitionChip” and task “Floor Planning.” In
addition, in the schedule, group 2 assumes that the task “Sim_Gates” should follow the task “Eng Layout &
Physical Ver’n.” Figure 24 shows the group 2’s schedule in Microsoft ProjectTM, and Figure 25 shows the
CPM diagram.

Figure 22. Group 1’s Schedule in Primavera P3
Start

Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

PartitionChip
& Floor
Planning

Generate Test
Vectors

Ship Tapes
to Foundry

Design_Coordination

Figure 23. Group 1’s CPM Diagram

Figure 24. Group 2’s Schedule in Microsoft Project

18 4

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

Generate Test
Vectors

Ship Tapes
to Foundry

Design_Coordination

Floor Planning

PartitionChip

Figure 25. Group 2’s CPM Diagram
To check for inconsistencies in the two schedules, we first use PSL wrappers to retrieve project information
from Primavera P3 and Microsoft ProjectTM. We then store the information in PSL files, convert the PSL files
into Otter format, and link the project information with Otter. Finally, Otter is employed to reason about the
project knowledge base and to detect conflicts. Figure 26 shows the results obtained from the reasoning. In the
last sentence, the “$F” indicates a conflict has been found; the sentence numbers 333 and 47 can be used to
traced the sources of conflicts. In particular, the sentence after_start(ID110,ID180,TUTO) specifies that ID110
(“Sim_Gates”) should finish before ID180 (“Generate Test Vectors”) starts. Similarly,
after_start(ID180,ID160,TUTO) indicates that ID180 completes before ID160 (“Eng Layout & Physical Ver’n”)
starts, while after_start(ID160,ID110,TUTO) indicates that ID160 completes before ID110 starts. The conflict
detected is graphically depicted in Figure 27. A cyclic dependency relationship in the project schedule is
detected because the task “Sim_Gates” needs to start after the task “Eng Layout & Physical Ver’n” is
completed, while at the same time the activity “Eng Layout & Physical Ver’n” needs to start after the activity
“Sim_Gates” finishes.

44 [] -after_start(x100,x101,x102)| -
after_start(x101,x103,x102)|after_start(x100,x103,x102).
47 [] -after_start(x111,x112,x113)| -
after_start(x112,x111,x113). 85 []
after_start(ID110,ID180,TUTO). 136 []
after_start(ID180,ID160,TUTO). 252 [] after_start(I
D160,ID110,TUTO). 310 [hyper,136,44,85]
after_start(ID110,ID160,TUTO). 333 [hyper,310,44,252]
after_start(ID160,ID160,TUTO). 361 [hyper,333,47,333] $F.

Figure 26. Reasoning

Results in Cyclic Dependency Relationships

19 3

Sim_Gates Generate
Test Vectors

Eng Layout &
Physical Ver'n

From Primavera P3

From MS Project

Figure 27. Cycle in Dependency Relationships
In addition to detecting logic conflicts in the activity relationships, we can also detect other conflicts that may
arise due to versioning problems. For example, the same activity may have different start dates or durations in
Primavera P3 and Microsoft ProjectTM. To find these conflicts, we can simply add the following axioms into
the knowledge base.

(forall ?a ?t1 ?t2 (=> (beginof ?a ?t1) (beginof ?a ?t2) (= ?t1 ?t2))
(forall ?a ?d1 ?d2 (=> (duration-of ?a ?d1) (duration-of ?a ?d2) (= ?d1 ?d2))

The first axiom specifies that the start date of an activity is unique. In other words, if an activity has two start
dates, these two start dates must be equal. Similarly, the second axiom specifies that the duration of an activity
is unique. These axioms will guarantee that an activity has a unique start date or duration. With these axioms
added into the project knowledge base, Otter can detect the activities that have different start dates or durations
in Primavera P3 and Microsoft ProjectTM.

20 4

59 [] -beginof(x162,x163)| -beginof(x162,x164)|x163==x164.
161 [] beginof(ID210,10738). 273 [] beginof(ID210,10773).
323 [hyper,273,59,161,demod,propositional] $F.

Figure 28.

Reasoning Results in Version Conflicts

Figure 28 shows the sample conflict of the start dates of the activity ID210 (“Fab, Test and Deliver”) detected
by the reasoning tool. The first logic sentence in Figure 28 indicates that an activity must have a unique start
date. Since Otter cannot directly operate on dates, we assume 01/01/1970 as the base date and use the Java class
Calendar to convert the dates into numeric values. The second logic sentence beginof(ID210,10738) specifies
that the activity ID210 starts at 10738 that is equivalent to 04/27/1999, as shown in Figure 22, which displays
the project schedule using Primavera P3. Similarly, in the logic sentence beginof(ID210,10773), the numeric
value 10773 corresponds to the date 06/01/1999, which is the start date of the activity ID210 from the schedule
shown in Figure 24 using Microsoft ProjectTM. The last logic sentence in Figure 28 concludes that the activity
ID210 has different start dates in the schedules from Primavera P3 and Microsoft Project, thus causing
inconsistency.
The above examples show that PSL can be used to detect inconsistency in the project knowledge base.
Following the proof process, we can trace for the root of the conflicts, identify the causes, and help resolve the
inconsistency problems in the project.
7 Conclusions
In an engineering project, project team members may use many software applications. Exchanging project
information among different software applications poses an impediment to collaboration. Maintaining the
consistency of the project information from various sources presents an even bigger challenge. Although PSL
was originally designed for manufacturing process information, our research shows that PSL can be used for
construction project management applications. In this study, we have developed PSL wrappers and successfully
exchanged project scheduling information among software applications, such as Primavera Project PlannerTM,
Microsoft ProjectTM, Vite SimVisionTM, and 4D Viewer. Moreover, we have explored the potential use of
logic-based PSL for conflict resolution and consistency checking of a project schedule. Our research shows that
PSL, an emerging interchange standard for manufacturing applications, not only shows promise in this role, but
also has the potential to resolve conflicts and check consistency.
Acknowledgements
This work is partially sponsored by the Center for Integrated Facility Engineering at Stanford University, a
Stanford Graduate Fellowship, and the Product Engineering Program at NIST. The Product Engineering
Program gets its support from the NIST’s SIMA (Systems Integration for manufacturing Applications) program
and the DARPA’s Radeo Program. The 4D Viewer and the 4D model of the Mortenson Ceiling Project are
provided by Professor Martin Fischer and his research group at Stanford University. The authors are grateful to
Mr. Peter Denno of NIST for his valuable inputs on this paper. No approval or endorsement of any commercial
product by the National Institute of Standards and Technology or by Stanford University is intended or
implied.
References
Akinci, B., Fischer, M., Levitt, R., and Carlson, R. (2002). “Formalization and Automation of Time-Space
Conflict Analysis.” Journal of Computing in Civil Engineering, Vol. 16, No. 2, pp. 124-134.
Anumba, C.J., Baldwin, A.N., Bouchlaghem, N.M., Prasad, B., Cutting-Decelle, A.F., Dufau, J., and
Mommessin, M. (2000). “Integrating Concurrent Engineering Concepts in a Steelwork Construction Project.”
Concurrent Engineering: Research and Applications, Vol. 8, No. 3, pp. 199-212.
Arkin, A. (2002), “Business Process Modeling Language.” Draft of the BPML Specification, BMPL Working
Group.
Fischer, L. (editor) (2002), Workflow Handbook 2002. Future Strategies.
21 3

Garas, F. K., and Hunter, I. (1998). “CIMSteel (Computer Integrated Manufacturing in Constructional
Steelwork) - Delivering the Promise.” Structural Engineer, Vol. 76, No. 3, pp. 43-45.
Gould, E.F. (2002). Managing the Construction Process: Estimating, Scheduling, and Project Control.
Prentice Hall.
Guarino, N. (1997). “Understanding, Building and Using Ontologies.” Int. J. of Human-Computer Studies,
Vol. 46, No. 2-3, pp. 293-301.
Hassanian M, Froese T., and Vanier D. (2000). “IFC-based Data Model for Integrated Maintenance
Management.” Proceedings of the Eighth International ASCE Conference on Computing and Building
Engineering, Vol. 1, pp. 796-803, Stanford, CA.
IAI (1997). “Industry Foundation Classes.” Specification Volumes 1-4, International Alliance for
Interoperability, Washington, DC.
IAI (2002). “AecXML.” International Alliance for Interoperability, <http://www.aecxml.org>.
ISO (1994). “Product Data Representation and Exchange: Part 1: Overview and Fundamental Principles.” No.
10303-1, International Organization for Standardization.
ISO (2003). “Industrial Automation System and Integration -- Process Specification Language.” No. 18629-11,
International Organization for Standardization.
McCune, W.W. (1994). “Otter 3.0 Reference Manual and Guide.” Mathematics and Computer Science
Division, Argonne National Laboratory, Report No. ANL-94/6.
McKinney, K., and Fischer, M. (1998). “Generating, Evaluating and Visualizing Construction Schedules with
4D-CAD Tools.” Automation in Construction, Vol. 7, No. 6, pp. 433-447.
Menzel, C., and Gruninger, M. (2001), “A formal foundation for process modeling.” Proceedings of Formal
Ontology in Information Systems, Ogunquit, Maine, pp. 256-269.
Penã-Mora, F., and Dwivedi, G.H. (2002). “Multiple Device Collaborative and Real Time Analysis System for
Project Management in Civil Engineering.” Journal of Computing in Civil Engineering, Vol. 16, No. 1, pp.
23-38.
Schlenoff, C., Ciocoiu, M., Libes, D., and Gruninger, M. (1999a). “Process Specification Language: Results of
the First Pilot Implementation.” Proceedings of the International Mechanical Engineering Congress and
Exposition, Vol. 10, pp. 529-539, Nashville, Tennessee.
Schlenoff, C., Gruninger, M., and Ciocoiu, M. (1999b). “The essence of the Process Specification Language.”
Transactions of the Society for Computer Simulation, Vol. 16, No. 4, pp. 204-216.
SUN (2002). “Java Compiler Compiler (JavaCC) - The Java Parser Generator.” Sun Microsystems,
<http://www.webgain.com/products/java_cc/>.
Vanier, D. (1998). “Product Modeling: Helping Life Cycle Analysis of Roofing Systems.” The Life Cycle of
Construction IT Innovations, Stockholm, Sweden, pp. 423-235.
Wos, L., and Pieper, G.W. (2000). A Fascinating Country in the World of Computing: Your Guide to
Automated Reasoning. World Scientific Publishing Company, Singapore.

22 4

