The Process Specification Language:
Theory and Applications

Michael Griininger Institute for Christopher Menzel
Systems Research University of Department of Philosophy
Maryland gruning@cme.nist.gov Texas A&M University
cmenzel@tamu.edu

Motivation for PSL

As the use of information technology in manufacturing operations has matured, the need to
integrate software applications has become increasingly important. However,
interoperability among these manufacturing applications is hindered because the
applications use different terminology and representations of the domain. These problems
arise most acutely for systems that must manage the heterogeneity inherent in various
domains and integrate models of different domains into coherent frameworks (Figure 1). For
example, such integration occurs in business process reengineering, where enterprise models
integrate processes, organizations, goals and customers. Even when applications use the
same terminology, they often associate different semantics with the terms. This clash over
the meaning of the terms prevents the seamless exchange of information among the
applications. Typically, point-to-point translation programs are written to enable
communication from one specific application to another. However, as the number of
applications has increased and the information has become more complex, it has been more
difficult for software developers to provide translators between every pair of applications
that must cooperate. What is needed is some way of explicitly specifying the terminology
of the applications in an unambiguous fashion.

The Process Specification Language (Schlenoff et al. 1999, Menzel and Gruninger 2001) has
been designed to facilitate correct and complete exchange of process information among
manufacturing system. Included in these applications are scheduling, process modeling,
process planning, production planning, simulation, project management, workflow, and
business process reengineering. We will give an overview of the theories within the PSL
Ontology, discuss some of the design principles for the ontology, and finish with examples
of process specifications that are based on the ontology.

Architecture of PSL

The PSL Ontology is organized into PSL-Core and a partially ordered set of extensions. All

axioms are first-order sentences, and are written in KIF (the Knowledge Interchange
Format).

Logistics
due date, delivery scheckile

Resource Manager

capactty, deadine

Scheduler
Ircughpd, process plans

Figure The challenge of interoperability.

There are two types of extensions within PSL -- core theories and definitional extensions.
Core theories introduce and axiomatise new relations and functions that are primitive. All
terminology introduced in a definitional extension have conservative definitions using the
terminology of the core theories. Thus, definitional extensions add no new expressive
power to PSL-Core.

Core Theories

PSL Core

The purpose of PSL-Core is to axiomatize a set of intuitive semantic primitives that is
adequate for describing the fundamental concepts of manufacturing processes (refs).
Consequently, this characterization of basic processes makes few assumptions about their
nature beyond what is needed for describing those processes, and the Core is therefore
rather weak in terms of logical expressiveness. Specifically, the Core ontology consists of
four disjoint classes: activities, activity occurrences, timepoints, and objects. Activities may
have zero or more occurrences, activity occurrences begin and end at timepoints, and
timepoints constitute a linearly ordered set with endpoints at infinity. Objects are simply
those elements that are not activities, occurrences, or timepoints.

PSL-Core is not strong enough to provide definitions of the many auxiliary notions that
become necessary to describe all intuitions about manufacturing processes. To supplement
the concepts of PSL-Core, the ontology includes a set of extensions that introduce new
terminology. Any PSL extension provides the logical expressiveness to axiomatize

intuitions involving concepts that are not explicitly specified in PSL-Core. All extensions
within PSL are consistent extensions of PSL-Core, and may be consistent extensions of
other PSL extensions. However, not all extensions within PSL need be mutually consistent.
Also, the core theories need not be conservative extensions of other core theories.

A particular set of theories is grouped together to form the Outer Core; this is a pragmatic
distinction, since in practice, they have been necessary for axiomatizing all other concepts
in the PSL Ontology.

Activitp

Creurrences

Comnple x Acfivities

Afonic Actiwities

Figure : The theories in the Outer Core of PSL.

Occurrence Trees

An occurrence tree is the set of all discrete sequences of activity occurrences. They are
isomorphic to substructures of the situation tree from situation calculus (McCarthy and
Hayes 1969, Reiter 1991, Pinto 1994), the primary difference being that rather than a
unique initial situation, each occurrence tree has a unique initial activity occurrence. As in

the situation calculus, the poss relation is introduced to allow the statement of constraints
on activity occurrences within the occurrence tree. Since the occurrence trees include
sequences that modelers of a domain will consider impossible, the poss relation "prunes"
away branches from the occurrences tree that correspond to such impossible activity
occurrences.

It should be noted that the occurrence tree is not the structure that represents the
occurrences of subactivities of an activity. The occurrence tree is not representing a
particular occurrence of an activity, but rather all possible occurrences of all activities in the
domain.

Discrete States

The Discrete States core theory introduces the notion of state (fluents). Fluents are changed
only by the occurrence of activities, and fluents do not change during the occurrence of
primitive activities. In addition, activities have preconditions (fluents that must hold before
an occurrence) and effects (fluents that always hold after an occurrence).

Subactivities

This core theory axiomatizes intuitions about subactivities. The only constraint imposed
within this theory is that the subactivity relation is isomorphic to a discrete partial
ordering. Other core theories impose additional constraints.

Atomic Activities

The core theory of Atomic Activities axiomatizes intuitions about the concurrent
aggregation of primitive activities. This concurrent aggregation is represented by the
occurrence of concurrent activities, rather than concurrent activity occurrences.

Complex Activities

This core theory provides the foundation for representing and reasoning about complex
activities and the relationship between occurrences of an activity and occurrences of its
subactivities. Within models of the Complex Activities theory, occurrences of complex
activities correspond to subtrees of the occurrence tree. An activity may have subactivities
that do not occur; the only constraint is that any subactivity occurrence must correspond to
a subtree of the activity tree that characterizes the occurrence of the activity. Not every
occurrence of a subactivity is a subactivity occurrence. There may be other external
activities that occur during an occurrence of an activity. Different subactivities may occur
on different branches of the activity tree, so that different occurrences of an activity may
have different subactivity occurrences.

Activity Occurrences

The Complex Activities only axiomatizes constraints on atomic subactivity occurrences.
The Activity Occurrences theory generalizes these intuitions to arbitrary complex
subactivities.

Additional Core Theories

The remaining core theories in the PSL Ontology include: Subactivity Occurrence Ordering
(axiomatizing different partial orderings over subactivity occurrence), Iterated Occurrence
Ordering (axioms necessary for defining iterated activities), Duration (augmenting PSL-
Core with a metric over the timeline), and Resource Requirements (which specifies the
conditions that must be satisfied by any object that is a resource for an actvity).

Definitional Extensions

The definitional extensions are grouped into parts according to the core theories that are
required for their definitions. Figure 3 gives an overview of these groups together with
example concepts that are defined in the extensions. The definitional extensions in a group
contain definitions that are conservative with respect to the specified core theories; for
example, all concepts in the Temporal and State Extensions have conservative definitions
with respect to both the Complex Activities and Discrete States theories.

Definitional Extensions Core Theories [Example Concepts

Activity Extensions Complex Activities Deterministic/nondeterministic
activities Concurrent activities
Partially ordered activities

Temporal and State Extensions |Complex Activities Discrete Preconditions Effects Conditional
States activities Triggered activities

Activity Ordering and Duration Subactivity Occurrence Ordering|/Complex sequences and branching

Extensions Iterated Occurrence Ordering [terated activities Duration-based
Duration constraints
Resource Role Extensions Resource Requirements Reusable, consumable, renewable,

Deteriorating resources

Figure : Definitional extensions of PSL.

Design Principles

The organization of the PSL Ontology and the properties of its extensions have been
shaped by several design principles. In presenting these principles we make a distinction
between hypotheses (that constrain uses of the PSL Ontology) and criteria (that specify
properties of the PSL Ontology itself).

Supporting Interoperability

Intuitively, two applications will be interoperable if they share the semantics of the
terminology in their corresponding theories. Sharing semantics between applications is
equivalent to sharing models of their theories, that is, the theories have isomorphic sets of
models. However, applications do not explicitly share the models of their theories. Instead,
they exchange sentences in such a way that the semantics of the terminology of these
sentences is preserved.

We will say that a theory T A is sharable with a theory TR if for any sentence A in the
language of T A, there exists an exchange that maps to a sentence R such that there is a
one-to-one mapping between the set of models of TA that satisfy A and the set of models
of Tg that satisty B We will say that a theory T A is interoperable with a theory TR if
any sentence _ that is provable from T A, there exists an exchange that maps _ to a sentence
that is provable from TR. We make the following hypothesis to restrict our attention to

domains in which sharability and interoperability are equivalent:

Interoperability Hypothesis
We are considering interoperability among complete first-order inference engines that
exchange first-order sentences.

The soundness and completeness of first-order logic guarantees that the theorems of a
deductive inference engine are exactly those sentences which are satisfied by all models, and
that any truth assignment given by a consistency checker is isomorphic to a model. If we
move beyond the expressiveness of first-order logic, we lose completeness, so that, for any
deductive inference engine there will be sentences that are entailed by a set of models but
which are provable by that engine. We could therefore have two theories that are sharable
but not interoperable.

Note that we are not imposing the requirement that the ontologies themselves be categorical
or even complete. The two applications must simply share the same set of models (up to
isomorphism). Ambiguity does not arise from the existence of multiple models for an
ontology — it arises because the two applications have nonisomorphic models, that is, the
ontology for application A has a model that is not isomorphic to any model for the

ontology of application B.

The Ontological Stance

When building translators, we are faced with the additional challenge that almost no
application has an explicitly axiomatized ontology. However, we can model a software
application as if it were an inference system with an axiomatized ontology, and use this
ontology to predict the set of sentences that the inference system decides to be satisfiable.
This is the Ontological Stance, and is analogous to the intentional stance (Dennet 87),
which is the strategy of interpreting the behavior of an entity by treating it as if it were a
rational agent who performs activities in accordance with some set of intentional
constraints.

In practice, the ontological stance requires the following assumption about the ontologies
that are attributed to an application:

Conformance Hypothesis
Every structure that is a model of the application ontology is isomorphic to a model of a
foundational theory that is an extension of PSL-Core.

Although this is a rather strong hypothesis, since it entails that all application ontologies
are consistent with PSL-Core, it also imposes conditions on the PSL Ontology, which must
be rich enough to axiomatize the application ontology.

Characterization of Models

Employing the Interoperability Hypothesis, we impose the following condition on the core
theories of the PSL Ontology:

Definability Criterion

Classes of structures for core theories within the PSL Ontology are axiomatized up to
elementary equivalence — the core theories are satisfied by any model in the class, and any
model of the core theories is elementarily equivalent to a model in the class. Further, each
class of structures is characterized up to isomorphism.

The Definability Criterion can also be applied as a methodology for evaluating the
axiomatization of an ontology (see Figure 4).

Structures .

Axiomatizability Satisfiability

Axiomatic
Theory

Figure : Methodology for the evaluation of axiomatic theories.

The first aspect of this approach is to identify the primary intuitions in some domain.
Within PSL, for example, we have intuitions about concepts such as activity, activity
occurrences, and timepoints. These intuitions also restrict the scope of the axiomatic
theories, and they serve as informal requirements that get formally specified in the classes
of structures, and later axiomatized in the theory itself.

The objective of the second aspect of the methodology is to identify each concept with an
element of some mathematical structure. In particular, given the nonlogical lexicon in some
language, the specified structures are isomorphic to the extensions of the relations,
functions, and constants denoted by the predicate symbols, function symbols, and constant
symbols of the lexicon. The class of structures corresponding to the intuitions of the
ontology will be defined either by specifying some class of algebraic or combinatorial
structures, or by extending classes of structures defined for other theories within the
ontology. Examples of structures include graphs, linear orderings, partial orderings, groups,
fields, and vector spaces.

This relationship between the intuitions and the structures is, of course, informal, but we
can consider the domain intuitions as providing a physical interpretation of the structures.
In this sense, we can adopt an experimental or empirical approach to the evaluation of the
class of intended structures in which we attempt to falsify these structures. If we can find
some objects or behaviour within the domain which do not correspond to an intended
structure, then we have provided a counterexample to the class of structures. In response,
we can either redefine the scope of the class of structures (i.e. we do not include the
behaviour within the characterization of the structures) or we can modify the definition of

the class of structures so that they capture the new behaviour.

For example, physicists use various classes of differential equations to model different
phenomena. However, they do not use ordinary linear differential equations to model heat
diffusion, and they do not use second-order partial differential equations to model the
kinematics of springs. If we wish to model some phenomena using a class of differential
equations, we can use the equations to predict behaviour of the physical system; if the
predictions are falsified by observations, then we have an incorrect set of equations.
Similarly, in our case, we can use some class of structures to predict behaviour or
characterize states of affairs; if there is no physical scenario in the domain that corresponds
to these behaviours or states of affairs, then we intuitively have an incorrect set of
structures.

Once we have specified the class of structures, we can formally evaluate an axiomatic
theory with respect to this specification. In particular, we want to prove two fundamental
properties:

* Satisfiability: every structure in the class is a model of the axiomatic theory.
* Axiomatizability: every model of the axiomatic theory is isomorphic to some structure
in the class.

Strictly speaking, we only need to show that a model exists in order to demonstrate that a
theory is satisfiable. However, in the axiomatization of domain theories, we need a
complete characterization of the possible models. For example, since we are considering the
domain of activities, occurrences, and timepoints, to show that a theory is satisfiable, we
need only specify an occurrence of an activity which together with the axioms are satisfied
by some structure. The problem with this approach is that we run the risk of having
demonstrated satisfiability only for some restricted class of activities. For example, a
theory of activities that supports scheduling may be shown to be consistent by
constructing a satisfying interpretation, but the interpretation may require that resources
cannot be shared by multiple activities or it may require all activities to be deterministic.
Although such a model may be adequate for such activities, it would in no way be general
enough for our purposes. We want to propose a comprehensive theory of activities, so we
need to explicitly characterize the classes of activities, timepoints, objects, and other
assumptions which are guaranteed to be satisfied by the specified structures.

The purpose of the Axiomatizability Theorem is to demonstrate that there do not exist any
unintended models of the theory, that is, any models that are not specified in the class of
structures. By the Interoperability Hypothesis, we do not need to restrict ourselves to
elementary classes of structures when we are axiomatizing an ontology. Since the
applications are equivalent to first-order inference engines, they cannot distinguish between
structures that are elementarily equivalent. Thus, the unintended models are only those
that are not elementary equivalent to any model in the class of structures.

The Role of Definitional Extensions

The terminology within the definitional extensions intuitively corresponds to classes of
activities and objects. Within the PSL Ontology, the terminology arises from the
classification of the models of the core theories with respect to sets of invariants.

Invariants are properties of models that are preserved by isomorphism. A set of invariants
is complete for a class of structures if and only if it can be used to classify the structures up
to isomorphism. For example, a finite abelian group can be classified up to isomorphism by
the subgroups whose orders are factors of the group’s order. In general, it is not possible to
formulate a complete set of invariants; for example, there is no known set of invariants that
can be used to classify graphs up to isomorphism. However, even without a complete set,
invariants can still be used to provide a classification of the models of a core theory in PSL,
and this leads to the following two criteria:

Classification Criterion
The set of models for the core theories of PSL are partitioned into equivalence classes
defined with respect to the set of invariants of the models.

Definitional Extension Criterion
Each equivalence class in the classification of PSL models can be axiomatized within a
definitional extension of PSL.

In particular, each definitional extension in the PSL Ontology is associated with a unique
invariant; the different classes of activities or objects that are defined in an extension
correspond to different properties of the invariant.

PSL in Action: A Foundation for Process Modeling

In this section we present a simple examples to illustrate one of the uses to which PSL can
be put, namely, as a foundation for the semantics, and hence integration, of business
process models.

Processes are patterns of activities. Process modeling is the linguistic, diagrammatic, or
numerical representation of such patterns. Process models, in these various forms, are
ubiquitous in industry: there is a plethora of business and engineering applications —
workflow, scheduling, discrete event simulation, process planning, business process
modeling, and others — that are designed explicitly for the construction of process models of
various sorts. The vision of enterprise integration, therefore, will be realized only if it is
possible to integrate business process models. It is somewhat scandalous that so little

work on this rather practical issue has been done.

As is widely recognized, process model integration will be possible only if there is a
common semantics of process information to draw upon. Among potential semantical
frameworks, the theory of Petri nets is perhaps the most powerful. However, we find Petri
nets undesirable as a formal foundation for process modeling for at least two reasons. First,

there is still no standard, widely agreed upon semantics for Petri nets, and those semantical
systems that exist are highly complex, and require a sophisticated knowledge of certain
areas of mathematics. (The most common approach to providing a semantics for Petri nets
is to map the apparatus into linear logic and then exploit one of several semantical theories
for the latter; see, e.g., Marti-Oliet and Meseguer 1991.) Second, Petri nets do not provide
any sort of axiomatic {theory} of processes. It is therefore rather difficult to gain any
insight, from Petri nets alone, into the nature of the things that process models are about,
and hence difficult to see how it can serve as a basis for process model sharing and
integration.

By contrast, PSL scores well on both of these counts. The language of PSL has a rigorous
semantics that draws upon familiar model theoretic and algebraic structures. That
semantics, in turn, is fully captured in a complete set of axioms. We illustrate how it can be
used as a foundation for process modeling with a simple example.

In general, business and engineering processes are described at the type level — a process
model characterizes a certain general, repeatable process structure. That structure, in turn,
might admit of many instances which — depending on how constrained the structure is —
might differ considerably from one another. A robust foundation for process modeling,
therefore, should be able to characterize both the general process structure described by a
model as well as the class of possible instances of that structure. Moreover, such a
foundation must be able clearly to represent the constraints that a process model places on
something's counting as an instance of the process, the constraints, as we might way, on
process realization.

A typical process is best thought of informally as a structured collection of activities that
are related to one another in a manner that reflects the process flow and temporal relations
that can appear in any given occurrence of the process. For instance, consider the painting
process depicted in Figure 5 (we use the graphical notation of the IDEF3 process
description capture method to illustrate the intuitive process). This diagram depicts a
general process that must begin with an occurrence of Paint Widget (represented by the
Paint Widget box with no predecessor), followed by an occurrence of Test Coverage. At
that point, depending on the outcome of the test, an occurrence of the process can either
loop back to another occurrence of Paint Widget (wherein our current widget is repainted)
or continue on to have the widget dried. Thus, there are, in principle, infinitely many
possible ways this single process can be instantiated by particular series of activity
occurrences, depending on how many times such a series loops back to produce another
occurrence of the Paint Widget activity.

Figure 5: Paint/Test/Dry Process

The PSL Ontology axiomatizes the classes of activities and resources that are used when

defining a process. However, when using PSL, software applications are not exchanging
definitions of classes of activities; rather, they are exchanging sentences that are satisfied by
activities that belong to these classes. Such sentences are known as process specifications,
and they include preconditions and effects, temporal constraints on occurrences, and
ordering constraints on subactivity occurrences. In the remainder of the paper, we present
several examples of processes, and a simplified syntax that may be used for process
specifications.

The first step is the notion of an activity role declaration (ARD), characterized generally as
follows:

(define-activity-role
;id <number>
:name <string>
:successors <number>*
:preconditions <PSL sentence>*
:postconditions <PSL sentence>*)

The value of the : id field in an ARD D is known as its role identifier, and the value
of the :name field of D is its activity name. The values of the : subactivity-
successor field are known as D’s successor identifiers and the values of the
:preconditions and :postconditions fields are known as D’s preconditions
and postconditions, respectively.

ARDs correspond roughly to IDEF3 boxes, as seen in Figures 5 and 6. Thus, in the context
of a process model, an ARD represents the structural role that the indicated activity plays
in the process represented by the model. An ARD has both name (: name) and identifier
(:1d) fields because the same activity can play different roles in the same process. In such
cases, we will typically have two or more distinct declarations with the same activity name
but with distinct activity identifiers, as it is the identifiers that indicate the distinct
structural roles being played by the activity in the overarching process. The successor field
will contain the identifiers of other ARD’s (or possibly the same ARD) in the model, and
the preconditions and postconditions PSL sentences that express conditions that must hold
before and after an occurrence of the given activity — in the indicated role — in a realization
of the model.

In addition to activity constraints, one also has to be able to express information about the
objects that participate in the activity occurrences that jointly realize the model. Such
information is often relegated to text in a graphical model, but is just as critical as the
process structure information represented explicitly by the boxes and arrows of IDEF3.
Hence, we introduce a similar mechanism — object declarations — for introducing the
participating objects into process models:

(define-object
:name <KIF constant>
:constraints <PSL sentence>")

The :name field of an object declaration, of course, specifies the constant to be
introduced, and the : axioms field consists of PSL sentences that characterize the
indicated object. Identifiers are unnecessary, as the same object does not play different
structural roles in a process the way that activities do.

Given this apparatus then, we can capture both the structural information indicated by the
IDEF3 diagram above as well as implicit content about participating objects. Note that a
general background ontology characterizing the relevant properties and relations in this
model (“Widget”, “In”, “Paint_Coverage”, etc.) is being assumed.

(define-object
:name widget
tconstraints (Widget widget))

(define-object
:name painter
:tconstraints (Paint Sprayer painter))

(define-object
:name oven
:constraints (Oven oven))

(define-activity-role

:id Act-1
:name Paint Widget
:successors 2
:preconditions

(or (not (Painted widget (beginof ?2occ)))

(not (Adequate (Paint Coverage widget (beginof ?occ)))))

:postconditions

(Painted widget (endof ?occ)))

(define-activity-role
:id Act-2
:name Test_Coverage
:successors 1 3
:preconditions (Painted widget (beginof ?2occ))
:postconditions (Adequate (Paint Coverage widget) (endof ?occ)))

(define-activity-role
:id Act-3
:name Dry Widget
:successors
:preconditions (Adequate (Paint Coverage widget) (beginof ?occ))
:postconditions (Dry widget (endof ?occ))

Note that the preconditions and postconditions all contain a free activity occurrence

variable ‘?occ’. Say that an activity occurrence e satisfies an ARD if e is an occurrence of
the activity named in the ARD and the preconditions and postconditions are true, relative

to some variable assignment that assigns e as the value the occurrence variable (‘?occ’ is the

only variable in the ARDs above). Because of the presence of the occurrence variable,
many different occurrences of the activity can satisfy the same ARD. This is critical, as
looping can lead to a situation where the same ARD is satisfied by many different
occurrences — as happens in the case of the our example if the same widget is repainted due
to inadequate coverage.

A collection of activity occurrences can be said to realize a process model M if

1. The temporal ordering over occurrences in the collection can be mapped into the
ordering determined by the successor fields of the ARDs in M in a structure
preserving way (i.e., “homomorphically”), and

2. Each activity occurrence in the collection satisfies the ARD to which it is mapped.

Given this, we see that any series of activity occurrences in which a widget is painted and
then, if necessary, repeatedly repainted until its coverage is adequate and then dried will
realize the process.

This example, of course, is rather simplistic. In particular, most iterative processes involve
not simply the same object undergoing a procedure numerous times, as with the widget in
the above process, but many objects of the same sort undergoing the same procedure, as in
a typical manufacturing process.

Figure 6: Paint/Test/Queue/Dry Process

For example, the IDEF3 diagram in Figure 6 contains both sorts of looping. In this process,
a widget is painted until coverage is adequate and then queued, at which point either another
widget is painted or, if the queue is full, all of the queued widgets are dried en masse. Thus,
the first loop, as in the first example, “carries” a single widget back to undergo an earlier
activity, whereas the second indicates the beginning of a new paint job with a new widget;
there is, so to say, no “object flow” in the second loop.

The flexibility of variables in the PSL language enables us to capture this semantics simply
and easily. Their meanings, unlike ordinary names, can shift, and we can use this fact to
allow them to refer to different widgets in different events in a process realization.. Like
ordinary names, however, we can put constraints on the values of these variables.
Following a similar notion in situation theory (see Barwise and Perry 87, Devlin 91), we

refer to such constrained variables (and occasionally, ambiguously, their values) as
“parameters”, and we introduce a concomitant declaration template:

(define-parameter
:variable <KIF variable>
:constraints <PSL sentence>")

And we now say that an occurrence e satisfies an ARD D if it satisfies it in the above sense
and, in addition, for any parameter J occurring in the pre- or postconditions of D, there is
an object a participating in e such that the parameter’s constraints are true when V' is
assigned a as its value.

Armed with this construct we can capture the detailed semantics of the process indicated in
Figure 6 by adding the following declarations:

(define-parameter
:variable ?w
tconstraints (Widget ?w))

(define-activity-role

:id Act-1
:name Paint Widget
:successors 2
:preconditions

(or (not (Painted ?w (beginof ?occ)))

(not (Adequate (Paint Coverage ?w (beginof ?occ)))))

:postconditions

(Painted widget (endof ?occ)))

(define-activity-role
:id Act-2
:name Test_Coverage
:successors 1 3
:preconditions (Painted ?w (beginof ?occ))
:postconditions (Adequate (Paint Coverage widget) (endof ?occ)))

(define-activity-role
:id Act-3
:name Queue Widget
:successors 1 4
:preconditions
(Adequate (Paint Coverage ?w (beginof ?occ)))
:postconditions

(Painted widget (endof ?occ)))

(define-activity-role
:id Act-4
tname Dry Widget
:successors
:preconditions (Adequate (Paint Coverage ?w) (beginof ?occ))
:postconditions (Dry ?w (endof ?occ))

Since variables can be assigned different values relative to an interpretation of the names and
predicates of a language, we are able to capture the intended semantics of the complex
looping of Figure 6.

Summary

Within the increasingly complex manufacturing environment where process models are
maintained in different software applications, standards for the exchange of this information
must address not only the syntax but also the semantics of process concepts. PSL draws
upon well-known mathematical tools and techniques to provide a robust semantic
foundation for the representation of process information. This foundation includes first-
order theories for concepts together with complete characterizations of the satisfiability and
axiomatizabilty of the models of these theories. Moreover, the modular organization of
PSL enables the flexible support of interoperability, even when the applications involved

do not have explicit ontologies.

References

Barwise, J. and Etchemendy, J. The Liar: An Essay on Truth and Circularity. New Y ork,
N.Y., Oxford University Press, 1987.

Dennet, Daniel C. The Intentional Stance. Cambridge, MA, The MIT Press, 1987.
Devlin, K. Logic and Information. Cambridge, U.K., Cambridge University Press, 1991.

Menzel, C. and Gruninger, M. A formal foundation for process modeling. In C. Welty and
B. Smith (eds.), Formal Ontology in Information Systems 2001, New York, ACM Press,
forthcoming.

Marti-Oliet, N., and J. Meseguer, From Petri Nets to Linear Logic. Mathematical Structures
in Computer Science 1(1), 69-101, 1991.

McCarthy, J., and Hayes, P. Some philosophical problems from the standpoint of artificial
intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie, eds. Edinburgh
University Press, Edinburgh, 1969, pp 463-502.

Pinto, J. Temporal Reasoning in the Situation Calculus, Technical Report KRR-TR-94-1,
Department of Computer Science, University of Toronto, 1994.

Reiter, R. The frame problem in the situation calculus: a simple solution (sometimes) and a
completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy, 1991, pp
418-440. Academic Press, San Diego.

Schlenoff, C., Gruninger, M., Ciocoiu, M.. The essence of the Process Specification
Language, Transactions of the Society for Computer Simulation vol.16 no.4 (December
1999) pp 204-216.

