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Abstract. Many tasks within semantic web service discovery can be
formalized as reasoning problems related to the partial ordering of sub-
activity occurrences in a complex activity. We show how the first-order
ontology of the Process Specification Language (PSL) can be used to
represent both the queries and the process descriptions that constitute
the underlying theory for the reasoning problems. We also identify ex-
tensions of the PSL Ontology for which these problems are NP-complete
and then explicitly axiomatize classes of activities for which the various
reasoning problems are tractable.

1 Introduction

Ontologies that represent complex activities (such as composite web services and
manufacturing process plans) are required for many applications of automated
reasoning. We typically need to specify the occurrence and ordering constraints
over the different subactivities; such constraints may either be explicitly repre-
sented or they may be entailed by other properties, such as preconditions and
effects.

Within domains of semantic web service discovery, resources are associated
with composite web service plans, which are partially ordered sequences of pro-
cesses. In general, such process plans may also be nondeterministic (that is,
involve different choices of sequences of processes). At any point in a web service
plan, there are multiple activities that can possibly occur next. Furthermore, dif-
ferent web service plans may have processes in common so that an object may
participate in an activity that is part of multiple plans. This scenario motivates
four queries that are relevant for the discovery and verification of semantic web
service plans, and which we will formalize later in this paper:

1. Is it possible for one activity in a web service process to occur before some
other activity?

2. Is one activity in a web service process required to occur before some other
activity?

3. Given the occurrence of some activity in a web service process, what activi-
ties are required to occur later?
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4. Given the occurrence of some activity in a web service process, what activi-
ties can possibly occur next?

In this paper, we will focus on the formalization of these four queries as first-
order entailment problems which are related to occurrences of complex activities
and the ordering constraints on those occurrences. To achieve this objective,
we use a first-order ontology in which complex activities and their occurrences
are elements of the domain, so that web service discovery can be expressed as
entailment problems that are solved by inference techniques that are sound and
complete with respect to models of the ontology. Inference is done using the
axioms of the ontology alone, without resorting to extralogical assumptions or
special algorithms used by interpreters.

In particular, we will use the PSL Ontology to axiomatize the constraints
in the antecedents, as well as the queries in the consequents, of the entailment
problems.1 Furthermore, we use the model theory of the PSL Ontology to pro-
vide correctness theorems for the specification of the queries and the process
descriptions for certain classes of activities. Finally, we will define extensions of
the PSL Ontology in which two of the entailment problems are NP-complete, and
additional extensions in which these entailment problems are tractable. In this
way, tractable classes of the problems are explicitly axiomatized within the on-
tology itself, and the relationships between different assumptions can themselves
be determined by first-order theorem proving.

2 PSL Ontology

As a modular set of theories in the language of first-order logic, the Process
Specification Language (PSL) [6, 7] has been designed to facilitate correct and
complete exchange of process information;2 whereas it has been adopted by the
Semantic Web Services Language (SWSL) Committee of Semantic Web Services
Initiative (SWSI) 3 to specify the model-theoretic semantics of Semantic Web
Services Ontology (SWSO) ([3], [8]), one of the two major components within
Semantic Web Services Framework (SWSF) [2].

Within the PSL Ontology, all core theories are consistent extensions of a
theory referred to as PSL-Core, which introduces the basic ontological commit-
ment to a domain of activities, activity occurrences, timepoints, and objects that
participate in activities. Additional core theories capture the basic intuitions for
the composition of activities, and the relationship between the occurrence of a
complex activity and occurrences of its subactivities.

In order to formally specify a broad variety of properties and constraints
on complex activities, we need to explicitly describe and quantify over complex
1 Given the entailment problem T |= φ, we say that T is the antecedent and φ is the

consequent.
2 PSL has been accepted as an International Standard (ISO 18629) within the Interna-

tional Organisation of Standardisation. The full set of axioms in the Common Logic
Interchange Format is available at http://www.mel.nist.gov/psl/ontology.html

3 http://www.swsi.org
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activities and their occurrences. Within the PSL Ontology, complex activities
and occurrences of activities are elements of the domain and the occurrence of
relation is used to capture the relationship between different occurrences of the
same activity.

A second requirement for formalizing the queries is to specify composition of
activities and occurrences. The PSL Ontology uses the subactivity relation to
capture the basic intuitions for the composition of activities. Complex activities
are composed of sets of atomic activities, which in turn are either primitive
(i.e. they have no proper subactivities) or they are concurrent combinations of
primitive activities.

Corresponding to the composition relation over activities, subactivity occurrence
is the composition relation over activity occurrences. Given an occurrence of a
complex activity, subactivity occurrences are occurrences of subactivities of the
complex activity.

Within the PSL Ontology, concurrency is represented by the occurrence of
concurrent activities rather than concurrent activity occurrences. We use the
following relation to generalize the notion of occurrence to include any atomic
activity that is a subactivity of the activity that occurs:

(∀s, a) atocc(s, a) ≡ (∃a1) atomic(a1)∧ occurrence of(s, a1)∧ subactivity(a, a1)

Finally, we need some way to specify ordering constraints over the subactivity
occurrences of a complex activity. The PSL Ontology uses the soo precedes(s1, s2, a)
relation to denote that subactivity occurrence s1 precedes the subactivity occur-
rence s2 in occurrences of the complex activity a.

The models of the axioms of the PSL Ontology have been characterized up to
isomorphism [7]. A fundamental structure within these models is the occurrence
tree, whose branches are equivalent to all discrete sequences of occurrences of
atomic activities in the domain. Elements of the occurrence tree are referred to
as arboreal occurrences.

Although occurrence trees characterize all sequences of activity occurrences,
not all of these sequences will intuitively be physically possible within a given
domain. We therefore consider the subtree of the occurrence tree that consists
only of possible sequences of activity occurrences, which we refer to as the legal
occurrence tree. The legal(o) relation specifies that the atomic activity occur-
rence o is an element of the legal occurrence tree.

The basic structure that characterizes occurrences of complex activities within
models of the ontology is the activity tree, which is a subtree of the legal oc-
currence tree that consists of all possible sequences of atomic subactivity occur-
rences; the relation root(s, a) denotes that the subactivity occurrence s is the
root of an activity tree for a. Elements of the tree are ordered by the soo precedes
relation; each branch of an activity tree is a linearly ordered set of occurrences of
subactivities of the complex activity. In addition, there is a one-to-one correspon-
dence between occurrences of complex activities and branches of the associated
activity trees.

In a sense, an activity tree is a microcosm of the occurrence tree, in which
we consider all of the ways in which the world unfolds in the context of an
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occurrence of the complex activity. Different subactivities may occur on different
branches of the activity tree – different occurrences of an activity may have
different subactivity occurrences or different orderings on the same subactivity
occurrences (see the examples4 in Figures 1 through 5). This distinction plays a
key role in the specification of the entailment problems in this paper.

3 Formalization of the Entailment Problems

We can use the PSL Ontology to specify the queries (informally posed in the
introduction) as the consequents of first-order entailment problems. The an-
tecedent of the entailment problems will consist of the following sets of sentences:

– Tpsl : the axioms of the PSL Ontology, together with the following three
sentences:
• Activity closure (primitive and complex)

(∀a) primitive(a) ≡ (a = A1) ∨ ... ∨ (a = An))
(∀a) ¬atomic(a) ≡ (a = P1) ∨ ... ∨ (a = Pm))
where A1, ..., An, P1, ..., Pn are constants denoting activities.

• Legal Occurrence Assumption 5

(∀o, a) occurrence of(o, a) ∧ atomic(a) ⊃ legal(o)
– Σpd(Pi) : the process description for the complex activity Pi, which specifies

the relationship between occurrences of the activity and its subactivities.

In this section, we first focus on the queries in the consequents of the prob-
lems, and then define the classes of activities and process descriptions that con-
stitute the antecedents of the problems.

3.1 Queries

The query in the consequent of one of our entailment problems is a first-order
sentence that is satisfied by properties of the activity trees within the models
of Tpsl and process descriptions. We can apply the model theory of the PSL
Ontology to provide characterizations of the activity trees for each query that
we consider, demonstrating the correctness of the sentence with respect to the
intended properties of the activity trees. In the motivating scenarios from the in-
troduction, process plans and composite web services are represented in the PSL
Ontology as complex activities. The four particular queries that we formalize in
this paper focus on the relationship between occurrences of complex activities
and their subactivities.
4 In these examples, we adopt the convention that oa

i denotes an occurrence of the
activity a. In all of the examples, we use the primitive activities register, hotel,
airplane, payment, and train.

5 We use this assumption in the complexity analysis to focus on the intractability that
arises solely from occurrence and ordering constraints, independently of precondi-
tions and effects.
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To formalize the first query, we want a sentence that determines whether
the subactivity A1 can possibly occur before the subactivity A2, whenever the
complex activity P occurs; such a sentence is characterized by the following
result:

Lemma 1. Suppose M is a model of Tpsl ∪Σpd(P ).
M |= (∀o)root(o, P ) ⊃ (∃o1, o2)occurrence of(o1, A1)∧soo precedes(o, o1, P )∧
occurrence of(o2, A2) ∧soo precedes(o, o2, P ) ∧ soo precedes(o1, o2, P )
iff any activity tree for the complex activity P contains a branch in which a
subactivity occurrence o1 of A1 precedes a subactivity occurrence o2 of A2.

The activity tree in Figure 1 contains a branch in which the subactivity
hotel occurs before airplane and also contains a branch in which the subactiv-
ity airplane occurs before hotel. In the same activity tree, there does not exist
a branch in which the payment subactivity occurs before the register subac-
tivity. In Figure 2, there does not exist any branch containing occurrences of
both subactivities airplane and train. The following lemma characterizes the
sentence that is satisfied when the subactivity A1 is required to occur before the
subactivity A2 in occurrences of the complex activity P :

Lemma 2. Suppose M is a model of Tpsl ∪Σpd(P ).
M |= (∀o, o1, o2) root(o, P ) ∧ occurrence of(o1, A1) ∧ occurrence of(o2, A2) ∧
soo precedes(o, o1, P ) ∧ soo precedes(o, o2, P ) ⊃ ¬soo precedes(o2, o1, P )
iff for any branch B in any activity tree for the complex activity P , either

1. every occurrence of the subactivity A1 in B precedes every occurrence of the
subactivity A2 in B, or

2. B does not contain occurrences of both A1 and A2.

For example, in Figure 4, the subactivity hotel occurs before payment on
every branch of the activity tree. On the other hand, there is no branch in
Figure 2, that contains occurrences of both train and airplane.

The third query from the introduction determines whether occurrences of
the subactivity A1 are followed by later occurrences of the subactivity A2 in
occurrences of the complex activity P . This sentence is characterized by the
next result:

Lemma 3. Suppose M is a model of Tpsl ∪Σpd(P ).
M |= (∀o, o1) root(o, P ) ∧ occurrence of(o1, A1) ∧ soo precedes(o, o1, P ) ⊃
(∃o2) occurrence of(o2, A2) ∧ soo precedes(o1, o2, P )
iff every occurrence of the subactivity A1 is the initial element of a subtree of an
activity tree for P that contains an occurrence of the subactivity A2.

Figure 2 illustrates this query, where every occurrence of the subactivity train
is followed by an occurrence of the subactivity payment.

The final query determines which activities can possibly occur next, given
the occurrence of some activity A1 in a process plan P . The following lemma
characterizes the sentence that defines this query:
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Lemma 4. Suppose M is a model of Tpsl ∪Σpd(P ).
M |= (∀o, o1) root(o, P ) ∧ occurrence of(o1, A1) ∧ soo precedes(o, o1, P ) ⊃
(∃a, o2) occurrence of(o2, a) ∧ soo precedes(o1, o2, P )∧
¬((∃o3) soo precedes(o1, o3, P ) ∧ soo precedes(o3, o2, P ))
iff no occurrence o1 of the subactivity A1 is a leaf of an activity tree for P .

In any proof of the above sentence with answer extraction, the variable a
binds to one of the successors of the occurrence of A1 in an activity tree for P .
In Figure 2, the next subactivity to occur after ohotel

2 is either airplane or train.

3.2 Classification of Activities

One set of sentences within the antecedent of the entailment problems is the
extension of the ontology with restricted classes of activities. Within the PSL
Ontology, complex activities are classified with respect to symmetries of their
activity trees. Concretely, these are axiomatized by mappings between the dif-
ferent branches of an activity tree or between different activity trees. In this
section we introduce the model-theoretic definitions for the classes of activity
trees that play a prominent role in this paper; their first-order axiomatization
can be found in the PSL Ontology.

Definition 1. An activity tree τ in a model of Tpsl is permuted iff for every
two branches B1, B2 ⊆ τ , there exists a bijection ϕ : B1 → B2 such that for any
activity occurrence o ∈ B1 and activity a,

〈o,a〉 ∈ occurrence of ⇔ 〈ϕ(o),a〉 ∈ occurrence of

Figure 1 shows an example of a permuted activity tree; there is a bijection
that maps the subactivity occurrences ohotel

2 , oairplane
3 , opayment

6 in the branch
B1 to the subactivity occurrences ohotel

5 , oairplane
7 , opayment

4 , respectively, in the
branch B2. Since the occurrence oregister

1 is an element of every branch, it is
mapped to itself. Intuitively, each branch of a permuted activity tree is a different
permutation of the same set of subactivity occurrences; in the example, the
same activities (register, hotel, airplane, and payment) occur on each branch,
although they occur in a different order. On the other hand, the activity tree
in Figure 2 is not permuted, since there is no mapping between the branch
containing oairplane

3 and otrain
8 .

Definition 2. An activity tree τ in a model of Tpsl is folded iff there exists
a branch B1 ⊆ τ such that for any branch B2 ⊆ τ there exists a surjection
ϕ : B2 → B1 such that for any activity occurrence o ∈ B1 and activity a,

〈o,a〉 ∈ atocc ⇒ 〈ϕ(o),a〉 ∈ atocc

With folded activity trees, the mappings between branches of the activity
tree allow occurrences of atomic subactivities to be mapped to occurrences of
concurrent subactivities. Figure 3 shows an example of a folded activity tree;
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oregister
1

ohotel
2

ohotel
5

oairplane
3 opayment

6

opayment
4 oairplane

7

B1

B2

Fig. 1. Example of a permuted activity tree.

oregister
1

ohotel
2

ohotel
5

oairplane
3 opayment

6

opayment
4 oairplane

7

otrain
8 opayment

9

Fig. 2. Example of a nonpermuted activity tree.

the two subactivity occurrences oregister
2 and opayment

4 on the branch B2 are
mapped to the subactivity occurrence o

(register+payment)
6 , which is an occurrence

of the atomic activity whose primitive subactivities payment and register are
concurrent.

oairplane
1

oregister
2 ohotel

3 opayment
4

ohotel
5 oregister+payment

6

B2

B1

Fig. 3. Example of a folded activity tree.

Each activity tree can be associated with a partial ordering that is preserved
by the mappings between branches, so that activity trees can be classified with
respect to the relationship between this ordering and branches of the trees. This
leads to two subclasses of permuted and folded activity trees that are particularly
relevant to the specification of manufacturing process plans and semantic web
services.
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Definition 3. Within a model of Tpsl, a permuted activity tree is a strong poset
activity tree iff there exists a partial linear such that there is a there is a one-to-
one correspondence between its linear extensions and branches of the tree.

Figure 4 is an example of a strong poset activity tree. The subactivities hotel
and airplane are incomparable in the partial ordering (since the ordering of the
occurrences of these two activities is not preserved on each branch), so there
are two branches in the activity tree, corresponding to the two possible linear
extensions.

Definition 4. Within a model of Tpsl, a folded activity tree is a concurrent poset
activity tree iff there is a one-to-one correspondence between branches of the tree
and the weak orderings of some set.

Figure 5 is an example of a concurrent poset activity tree. The subactivities
hotel and register are incomparable in the partial ordering, so there are two
branches in the activity tree, corresponding to the two possible linear extensions;
there is also a branch in the activity tree containing the occurrence of the activity
in which hotel and register are concurrent. Note that any concurrent poset tree
contains a subtree that is a strong poset tree.

oregister
1

ohotel
2

ohotel
5

oairplane
3

oairplane
4

opayment
6

opayment
7

Fig. 4. Example of a strong poset activity tree.

oairplane
1

oregister
2 ohotel

3

oregister+hotel
4

opayment
5

opayment
6

ohotel
7 oregister

8 opayment
9

Fig. 5. Example of a concurrent poset activity tree.

Strong poset and concurrent poset activity trees capture the intended se-
mantics of constructs that are present in a wide variety of approaches to process
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modelling, including OWL-S [11], UML activity diagrams [4], and IDEF3 [10].
In particular, strong posets are equivalent to the AnyOrder control construct in
OWL-S and the AND-junctions of IDEF3, while concurrent posets are equiv-
alent to the Split control construct in OWL-S and to forks in UML diagrams.
Nevertheless, none of these constructs can be axiomatized in their respective
formalisms, either because the underlying language lacks the expressiveness (as
with OWL-S) or the formalism lacks a language with a formal model-theoretic
semantics. For the same reasons, the relevant queries are not definable in these
formalisms.

On the other hand, the class of strong posets has a rather elegant first-order
axiomatization in the PSL Ontology that is based on the following property –
within a strong poset, there exists a one-to-one mapping between siblings and
children in the activity tree that preserves the occurrence of relation, for any
two elements that are incomparable in the partial ordering. Thus, the activity
tree in Figure 1 is not a strong poset activity tree since the next subactivity
occurrence after ohotel

2 is not an occurrence of the subactivity payment.
Concurrent posets have a similar axiomatization, with the additional con-

dition that for any two siblings in the activity tree there exists another sibling
that is an occurrence of the concurrent activity that is composed the activities
associated with the siblings.

3.3 Process Descriptions

A process description is an axiomatization of the set of activity trees for an
activity within models of the PSL Ontology. The syntactic form of the process
description is tightly constrained by the classes of activities in the ontology.

Theorem 1. A complex activity P has a set of finite permuted activity trees iff
its process description Σpd(P ) is logically equivalent to a sentence of the form

(∀o) occurrence of(o, P ) ⊃
[(∃o1, ..., on) occurrence of(o1, A1) ∧ ... ∧ occurrence of(on, Am)∧
subactivity(A1, P ) ∧ ... ∧ subactivity(Am, P ) ∧ O(o1, ..., on, P )∧
((∀s) arboreal(s) ⊃ subactivity occurrence(s, o) ≡ ((s = o1) ∨ ... ∨ (s = on)))]

where O(o1, ..., on, P ) is a boolean combination of soo precedes literals whose
only variables are o1, ..., on.

Proof. ⇒:
Suppose that the complex activity P has finite permuted activity trees.
Since the activity trees are finite, all of their branches are finite. Furthermore,

since there is a bijection between the branches in the tree, all branches have the
same cardinality n. Thus, each branch consists of n occurrences of subactivities
of P , so that we have

Tpsl ∪ Σpd(P ) |= (∀o) root(o, P ) ⊃ [(∃o1, ..., on) occurrence of(o1, A1) ∧ ... ∧
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occurrence of(on, Am) ∧ subactivity(A1, P ) ∧ ... ∧ subactivity(Am, P )∧
O(o1, ..., on, P )

Each of these is an arboreal subactivity occurrence of an occurrence of P ,
and all arboreal subactivity occurrence of an occurrence of P are elements of a
branch of an activity tree. We therefore have

Tpsl ∪ Σpd(P ) |= (∀o) root(o, P ) ⊃ [(∃o1, ..., on) occurrence of(o1, A1) ∧ ... ∧
occurrence of(on, Am)∧((∀s)arboreal(s) ⊃ subactivity occurrence(s, o) ≡ ((s =
o1) ∨ ... ∨ (s = on)))]

⇐:
Suppose that P has the process description Σpd.
This process description entails that every occurrence of P has exactly n

occurrences of atomic subactivities of P . Therefore, each branch of an activity
tree for P has occurrences of the same set of atomic subactivities, so that we
can define a bijection between any two branches of the activity tree. Hence, the
activity tree is permuted.

For example, the process description for the activity P1 in Figure 1 is

(∀o) occurrence of(o, P1) ⊃ [(∃oi, oj , ok, ol) occurrence of(oi, register)
∧occurrence of(oj , hotel) ∧ occurrence of(ok, airplane)∧
occurrence of(ol, payment)∧subactivity(register, P1)∧subactivity(hotel, P1)∧
subactivity(airplane, P1)∧subactivity(payment, P1)∧soo precedes(oi, oj , P1)∧
soo precedes(oj , ok, P1) ∧ (soo precedes(ol, ok, P1) ≡ ¬soo precedes(ok, ol, P1))
∧((∀s) arboreal(s) ⊃ subactivity occurrence(s, o) ≡ ((s = oi) ∨ (s = oj) ∨ (s =
ok) ∨ (s = ol)))]

For folded activity trees, we have a similar, albeit weaker, result:

Theorem 2. If the complex activity P has a set of finite folded activity trees,
then its process description Σpd(P ) entails a sentence of the form

(∀o) occurrence of(o, P ) ⊃ [(∃o1, ..., on) atocc(o1, A1) ∧ ... ∧ atocc(on, Am) ∧
subactivity(A1, P )∧...∧subactivity(Am, P )∧O(o1, ..., on, P )∧((∀s)arboreal(s) ⊃
subactivity occurrence(s, o) ≡ ((s = o1) ∨ ... ∨ (s = on)))]

where O(o1, ..., on, P ) is a boolean combination of soo precedes and equality lit-
erals whose only variables are o1, ..., on.

Proof. Suppose that the complex activity P has finite folded activity trees.
Since the activity trees are finite, all of their branches are finite. Furthermore,

since there is a surjection from the branches in the tree into a unique maximal
branch, this branch has the maximum cardinality n. Thus, each branch consists
of at most n occurrences of subactivities of P .

By the definition of folded activity trees, for each element s of a branch of
an activity tree that is an occurrence of the subactivity a of P , there exists an
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element s′ of the maximal branch such that

〈s′,a〉 ∈ atocc

We therefore have

Tpsl∪Σpd(P ) |= (∀o)root(o, P ) ⊃ [(∃o1, ..., on)atocc(o1, A1)∧...∧atocc(on, Am)∧
subactivity(A1, P ) ∧ ... ∧ subactivity(Am, P )

Each element of a branch is an arboreal subactivity occurrence of an occur-
rence of P , and all arboreal subactivity occurrence of an occurrence of P are
elements of a branch of an activity tree:

Tpsl∪Σpd(P ) |= (∀o)root(o, P ) ⊃ [(∃o1, ..., on)atocc(o1, A1)∧...∧atocc(on, Am)∧
((∀s) arboreal(s) ⊃ subactivity occurrence(s, o) ≡ ((s = o1) ∨ ... ∨ (s = on)))]

The additional conditions in the definitions of strong poset activities and con-
current poset activities also impose restrictions on their process descriptions.

Theorem 3. If a complex activity P has finite strong poset or concurrent poset
activity trees, then the ordering formula O(o1, ..., on, P ) in its process description
is logically equivalent to a conjunction of soo precedes literals.

For example, the process description for the activity P2 in Figure 4 is

(∀o) occurrence of(o, P2) ⊃ [(∃oi, oj , ok, ol) occurrence of(oi, register)
∧occurrence of(oj , hotel) ∧ occurrence of(ok, airplane)∧
occurrence of(ol, payment)∧subactivity(register, P1)∧subactivity(hotel, P1)∧
subactivity(airplane, P1)∧subactivity(payment, P1)∧soo precedes(oi, oj , P2)∧
soo precedes(oi, ok, P2) ∧ soo precedes(oj , ol, P2) ∧ soo precedes(ok, ol, P2)
∧((∀s) arboreal(s) ⊃
subactivity occurrence(s, o) ≡ ((s = oi) ∨ (s = oj) ∨ (s = ok) ∨ (s = ol)))]

4 Complexity of Reasoning Problems

We can now consider the computational complexity of the entailment problems,
under the assumptions that the process descriptions axiomatize the activity trees
in the classes that we have presented above. In particular, we introduce addi-
tional assumptions to specify extensions to the PSL ontology, and then determine
the complexity of the entailment problems in these extensions.

Definition 5. The Permuted or Folded Occurrence Assumption (PFOA) is the
sentence 6:
6 permuted(o), folded(o), strong poset(o), and concurrent poset(o) are the relations

defined within the PSL Ontology to axiomatize the corresponding classes of activity
trees.
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(∀o, a) occurrence of(o, a) ∧ ¬atomic(a) ⊃ (permuted(o) ∨ folded(o))

The Strong or Concurrent Poset Assumption (SCPA) is the sentence:
(∀o, a)occurrence of(o, a)∧¬atomic(a) ⊃ (strong poset(o)∨concurrent poset(o))

It can be shown that Tpsl |= SCPA ⊃ PFOA.
The following results show that these two assumptions are close to the bound-

ary between tractability and intractability for the entailment problems that we
have defined.

Theorem 4. Suppose the complex activity P has only finite activity trees. De-
termining

Tpsl ∪ Σpd(P ) ∪ PFOA |= (∀o) root(o, P ) ⊃ (∃o1, o2)occurrence of(o1, A1) ∧
soo precedes(o, o1, P ) ∧ occurrence of(o2, A2) ∧ soo precedes(o, o2, P )∧
soo precedes(o1, o2, P )

is NP-complete.

Proof. By Theorem 1 and 2, there are n existentially quantified activity occur-
rence variables in Σpd(P ). By PFOA, any branch of an activity tree contains
at most n atomic activity occurrences, and the maximum number of branches
in any activity tree is equal to the number of weak orderings on a set of n
points. Thus, the problem is in NP, since by Lemma 1 we need to check whether
the branch contains a subactivity occurrence of A1 that precedes a subactivity
occurrence of A2.

For folded activity trees, the proof can be found in [14], which first provides
a straightforward reduction from an instance I of Isat problem [1] in Interval
Algebra (represented as a set of precedence and/or concurrency restrictions be-
tween endpoints of intervals of the instance) into f(I), an instance of the problem
of determining the existence of a complex activity P (composed of subactivity
occurrences with corresponding soo precedes and/or conc constraints) occur-
rences. A new subactivity occurrence oi that precedes any other occurrences oj

is then added to construct a new complex activity P ′. It is obvious I is satisfiable
iff soo precedes(oi, oj , P

′).
For permuted activity trees, since all of the occurrence variables denote dis-

tinct subactivity occurrences and the ordering formulae in the process description
is a boolean combination of soo precedes literals, NP-completeness follows from
a straightforward reduction from 3SAT.

Thus, this entailment problem (whose query was characterized in Lemma 1)
is intractable even when we restrict the activities to have permuted or folded
activity trees.

If we strengthen the assumption so that we consider only strong poset or
concurrent poset activity trees, then we obtain an extension of the theory in
which the entailment problem is tractable.
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Theorem 5. Suppose the complex activity P has only finite activity trees. There
exists an O(n2) algorithm to determine

Tpsl ∪ Σpd(P ) ∪ SCPA |= (∀o) root(o, P ) ⊃ (∃o1, o2)occurrence of(o1, A1) ∧
soo precedes(o, o1, P ) ∧ occurrence of(o2, A2) ∧ soo precedes(o, o2, P )∧
soo precedes(o1, o2, P )

where n is the number of existentially quantified activity occurrence variables
in Σpd(P ).

Proof. Suppose that Σpd(P ) contains n activity occurrence variables and m
soo precedes literals. By Theorem 3, we can construct a directed graph G =
〈V,E〉, where V is the set of subactivity occurrence variables occi, and (occi, occj) ∈
E iff the literal soo precedes(occi, occj , P ) is in Σpd(P ). Σpd(P ) is consistent
(and hence there exists an occurrence of P ) iff there exists a linear ordering on
the vertices in V . This can be found using a topological sort algorithm, whose
complexity is O(n + m), where the upper bound for m is n(n− 1)/2 (for a com-
plete graph). Now, let Φ be the existential conjunction that is the consequent of
the query. We can define another process description

Σpd(P ′) = Σpd(P ) ∧ Φ

Similarly, we know that checking the consistency of Σpd(P ′) (which is equivalent
to the existence of P ′) can also be solved in O(n2) time (as n stays unchanged).
And it is straightforward to see that the existence of occurrence of P ′ implies that
it is possible that there exists a subactivity occurrence of A1 before a subactivity
occurrence of A2 in an activity tree for P .

Note that the algorithm requires a process description with a fixed set of sub-
activity occurrence variables and ordering constraints that are equivalent to a
conjunction of soo precedes literals. Although the first condition is satisfied by
all permuted and folded activities, only strong poset and concurrent poset ac-
tivities have process descriptions that satisfy the second condition.

We can also consider the query that we characterized in Lemma 2:

Theorem 6. Suppose the complex activity P has only finite activity trees. De-
termining

Tpsl ∪Σpd(P ) ∪ PFOA |= (∀o, o1, o2) root(o, P ) ∧ occurrence of(o1, A1)∧
occurrence of(o2, A2) ∧ soo precedes(o, o1, P ) ∧ soo precedes(o, o2, P ) ⊃
¬soo precedes(o2, o1, P )

is NP-complete.

Proof. By Lemma 2, the sentence is logically equivalent to

(∀o) root(o, P ) ⊃ ¬(∃o1, o2)occurrence of(o1, A1) ∧ soo precedes(o, o1, P )∧
occurrence of(o2, A2) ∧ soo precedes(o, o2, P ) ∧ soo precedes(o1, o2, P )
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Since the activity trees for P are either permuted or folded, we know that the
same set of activities occur on every branch, so that the above sentence becomes

(∀o) root(o, P ) ⊃ (∃o1, o2)occurrence of(o1, A1) ∧ soo precedes(o, o1, P )∧
occurrence of(o2, A2) ∧ soo precedes(o, o2, P ) ∧ soo precedes(o1, o2, P )
which is equivalent to the sentence in Theorem 4.

Once again, if we use the Strong or Concurrent Poset Assumption, then
we have an extension of the PSL Ontology in which the entailment problem is
tractable.

Theorem 7. Suppose the complex activity P has only finite activity trees. There
exists an O(n2) algorithm to determine

Tpsl ∪Σpd(P ) ∪ SCPA |= (∀o, o1, o2) root(o, P ) ∧ occurrence of(o1, A1)∧
occurrence of(o2, A2) ∧ soo precedes(o, o1, P ) ∧ soo precedes(o, o2, P ) ⊃
¬soo precedes(o2, o1, P )

where n is the number of existentially quantified activity occurrence variables
in Σpd(P ).

Proof. We can use the algorithm from the proof of Theorem 5 to determine
whether there exists branch containing a subactivity occurrence of A1 before a
subactivity occurrence of A2 in an activity tree for P and a branch containing a
subactivity occurrence of A2 before a subactivity occurrence of A1 in an activity
tree for P . If one of these branches does not exist, then the ordering satisfied by
the other branch is satisfied on all branches.

The complexity of the entailment problems characterized in Lemmas 3 and
4 is still open.

5 Summary

We have shown how the PSL Ontology can be used to define the antecedents and
consequents for first-order entailment problems related to the partial ordering of
subactivity occurrences in occurrences of complex activities. The model theory
of the PSL Ontology also allows us to prove the correctness of the definitions of
the queries, as well as the correctness of the process descriptions for the classes
of activities used within this paper.

It is difficult to define these entailment problems using other process mod-
elling ontologies. Approaches such as the Business Process Modelling Notation
(BPMN) lack an ontological foundation. Ontologies such as [13] lack a model
theory. The ontologies in [5] and [11] lack axiomatizations in their respective
languages, so that we cannot formalize the queries as entailment problems. On-
tologies such as [12] and [9] provide axiomatizations, but they lack an explicit
and complete characterization of the models of the axiomatizations. These ap-
proaches also fail to make the distinction between the axioms in ontology and
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the classes of sentences in the process descriptions. As a result, it is difficult to
define classes of activities such as permuted and strong poset, and we are unable
to prove the correctness of the process descriptions. Finally, approaches such as
[9] are unable to quantify over complex activities and their occurrences, which
is required by the entailment problems that we considered.

In addition to providing a model-theoretic characterization of the sentences in
the antecedents and consequents of the entailment problems, we have also defined
extensions of the PSL Ontology in which the associated entailment problems are
NP-complete and stronger extensions in which the problems are tractable. This
demonstrates that the PSL Ontology can not only be used to axiomatize the
assumptions that guarantee tractability, but it can also be used to reason about
the logical relationships among these assumptions.

There are several avenues for future work. First, we want to provide a sharper
characterization of the boundary between tractable and intractable extensions
of the PSL Ontology by finding the maximal classes of ordered activity trees
that contain the strong poset and concurrent poset activity trees and for which
the entailment problems are still tractable.

Second, there are many other classes of activity trees and activities in the
PSL Ontology which are independent of the folded and permuted activity trees;
no work has yet been done to characterize the complexity of the entailment prob-
lems with these extensions of the PSL Ontology. This includes the entailment of
ordering constraints from precondition and effect axioms.

Finally, we can apply the methodology of defining tractable extensions of
the PSL Ontology to reasoning problems including temporal projection, plan
verification, and plan recognition.
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