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Abstract
Allen’s interval algebra is a set of thirteen jointly exhaustive and pairwise disjoint binary relations
representing temporal relationships between pairs of timeintervals. Despite widespread use, there
is still the question of which time ontology actually underlies Allen’s algebra. Early work specified
a first-order ontology that can interpret Allen’s interval algebra; in this paper, we identify the
first-order ontology that is logically synonymous with Allen’s interval algebra, so that there is a
one-to-one correspondence between models of the ontology and solutions to temporal constraints
that are specified using the temporal relations. We further prove a representation theorem for
the ontology, thus characterizing its models up to isomorphism.
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1 Introduction

Temporal reasoning has long been studied in artificial intelligence, particularly since the
seminal work of Allen, in which time is represented using binary relations over intervals. The
composition of these relations leads to an algebra, which have been widely used for constraint
satisfaction problems. Today, virtually every presentation of a time ontology includes at
least the diagram of the temporal relations in Allen’s algebra and the composition table for
the relations. This work was later extended by Hayes and Allen, who proposed a first-order
ontology corresponding to Allen’s algebra; additional extensions were proposed by Ladkin
and Maddox.

Given this long story, it might be surprising that there is anything left to say; yet a closer
inspection of the ontologies involved leads to some interesting observations. First, nobody
has shown which ontology of time intervals is equivalent to Allen’s Interval Algebra; previous
work has only shown that a first-order axiomatization of the algebra is interpreted by a
particular axiomatization of an ontology of time intervals.

Second, there has been no characterization up to isomorphism of the models of the
first-order axiomatization of Allen’s Interval Algebra. The closest work along these lines
has been a discussion of the models of time interval ontologies, but this is far short of a full
characterization. The models are often informally specified; the more formal specifications of
the models refer to intervals of integers or rational numbers, rather than an explicit formal
specification in the signature of the ontologies. Furthermore, there have been no proofs of
representation theorems for these classes of models that do not refer to an underlying set of
points. Finally, the relationship between different ontologies of time intervals has not been
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fully explicated. The relationship between these other interval ontologies and Allen’s Interval
Algebra is thus also not clear.

In this paper we investigate Allen’s Interval Algebra based on the metalogical relationship
between the first-order theory of the composition table and the different axiomatizations of
time ontologies of intervals. After reviewing the basic axiomatizations of the time ontologies
in Section 2, we discuss the relationship between the theory of the interval algebra Tallen and
Hayes’ axiomatization (Tinterval_meeting) in Section 3. After showing that Tinterval_meeting

cannot be interpreted by Tallen, we propose a new ontology Tbounded_meeting, which is weaker
than Tinterval_meeting. Our key result is that a nonconservative extension of the interval
algebra, which we call T ∗allen, is logically synonymous with the Tbounded_meeting, meaning
Tbounded_meeting and T ∗allen axiomatize the same class of structures. In other words,the
two theories are semantically equivalent, and only differ in signature (i.e., the non-logical
symbols). Finally, in Section 4, we present a characterization of models of Tbounded_meeting

up to isomorphism, and explain how such a characterization can be used in characterizing
algebraic properties of models of Tallen.

2 Preliminaries

2.1 Allen’s Interval Algebra
Allen’s introduction of thirteen relations over temporal intervals [2] laid the foundations
for qualitative temporal reasoning and representation. The interval relations are meets,
before, starts, ends, overlaps, during, their inverses met_by, after, started_by, ended_by,
overlapped_by, contains, and equality. These relations are pairwise disjoint and exhaustive
(that is, any two time intervals must be related by one of these relations). The notion of an
algebra over these relations arises from considering the intersection, union, and composition
of a pair of temporal relations. This leads to the composition table CT , which is a 13 ×
13 matrix such that for each ordered pair of interval relations Ri,Rj , the cell CT (Ri, Rj)
indicates the possible temporal relations between two intervals a and c assuming that Ri(a, b)
and Rj(b, c) holds. For example, CT (starts, overlaps) = {before, overlaps, meets}, meaning
that if starts(a, b) and overlaps(b, c), then the interval a is before, overlaps, or meets the
interval c.

2.2 Ontologies for Time Intervals
Although the application of Allen’s interval algebra was widespread in the specification and
solution of temporal constraint satisfaction problems, it was several years before people
considered its relationship to the time ontologies being developed within the knowledge
representation community. In this section, we review the primary time ontologies that are
relevant to the axiomatization of the interval algebra in first-order logic.

Some of the earliest time ontologies [12] treated timepoints as the primitive entities in
the domain. However, the entities for the interval algebra are time intervals – points do not
exist. The first proposal for the axiomatization of an ontology1 of time intervals as related to
Allen’s interval algebra was the work of Hayes [7], [1], in which there is one primitive binary
relation meets over intervals. This axiomatization, which we will refer to as Tinterval_meeting

is shown in Figure 1.

1 A theory is set of first-order sentences closed under logical entailment. In this paper, we use the terms
ontology and theory interchangably.
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(∀i, j, k, m) meets(i, k) ∧meets(j, k) ∧meets(i, m) ⊃ meets(j, m) (1)
(∀i)(∃j, k) meets(j, i) ∧meets(i, k) (2)
(∀i, j, k, l) (meets(i, j) ∧meets(k, l)) ⊃
(meets(i, l) ∨ ((∃n) ((meets(i, n) ∧meets(n, l)) ∨ (meets(k, n) ∧meets(n, j))))) (3)
(∀i, j) meets(i, j) ⊃ ¬meets(j, i) (4)
(∀i, j, k, m) meets(i, j) ∧meets(j, k) ∧meets(k, m) ⊃ (∃n) meets(i, n) ∧meets(n, m)

(5)

Figure 1 The axioms of Tinterval_meeting.

(∀i, j) before(i, j) ≡ (∃k) meets(i, k) ∧meets(k, j) (6)
(∀i, j) starts(i, j) ≡ (∃k, m, n) meets(k, i) ∧meets(i, m)
∧meets(m, n) ∧meets(k, j) ∧meets(j, n) (7)
(∀i, j) ends(i, j) ≡ (∃k, m, n) meets(k, m) ∧meets(m, i)
∧meets(i, n) ∧meets(k, j) ∧meets(j, n) (8)
(∀i, j) overlaps(i, j) ≡ (∃k, m, n, o, p) meets(k, m) ∧meets(m, n)
∧meets(n, o) ∧meets(o, p) ∧meets(m, j) ∧meets(j, p) ∧meets(k, i) ∧meets(i, o) (9)
(∀i, j) during(i, j) ≡ (∃k, m, n.o) meets(k, m) ∧meets(m, i)
∧meets(i, n) ∧meets(n, o) ∧meets(k, j) ∧meets(j, o) (10)

Figure 2 Tinterval_rel: the definitions for Allen’s Interval Algebra relations.

By Axiom (1) if two intervals meet a common interval, then the sets of intervals that each
meet is equivalent to each other. For each time interval, Axiom (2) guarantees the existence
of an interval that it meets, and an interval that is met by it. Since this leads to infinite
models, we will refer to this as the Infinity Axiom. Axiom (3) captures the intuition that the
meets relation leads to an ordering over time intervals. By Axiom (4), the meets relation is
asymmetric. Axiom (5) is often referred to as the Sum Axiom, since it entails the existence
of an interval that is formed by the union of two intervals that meet.

The axiomatization of Tinterval_meeting is sufficient to enable the definition of the relations
in Allen’s interval algebra (see Figure 2). Tinterval_meeting ∪ Tinterval_rel is therefore a
definitional extension of Tinterval_meeting. This extension will play a key role in determining
the relationship between Tinterval_meeting and the interval algebra.

Hayes describes the models of Tinterval_meeting and its extensions in terms of the set of
intervals on Q (rational numbers) and Z (integers). For example, he describes one model
which interprets intervals as open connected subsets of Q, such that (a, b) meets (c, d) when
a = c and the intersection of two meeting intervals is empty. Alternative models exist, which
interpret intervals as closed connected subsets. Analogous models are also described as sets
of closed intervals on Z.

TIME 2017
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This treatment is inadequate for several reasons. Strictly speaking, a structure on the
sets of intervals on Q is not a model of Tinterval_meeting because it does not have the same
signature; at best, this is saying that models of Tinterval_meeting can be interpreted in such
a structure. Yet even this falls short because it does not determine whether all models can
be interpreted in this way, or whether there exist other models which must be constructed
in a different fashion (i.e. do there exist models of the ontology that are not isomorphic
to intervals over Q or Z?). Furthermore, the description is informal, without a formal
proof of equivalence; there is no explicit definition or characterization of the models of
Tinterval_meeting in and of themselves.

Several extensions to Tinterval_meeting have been proposed. The work of Ladkin ([9],
in particular explored an extension which is categorical. Ladkin provides a more formal
characterization for the models of his axiomatization which also specifies intervals as pairs of
points in an underlying linear ordering. As with Hayes, this is essentially a representation
theorem for models of the ontology, rather than a direct characterization of the models
themselves.

3 Relationship between Allen’s Interval Algebra and Time Ontologies

Although [7] stated that Allen’s Interval Algebra can be derived from the ontology Tinterval_meeting,
the two approaches display different properties. In particular, all models of Tinterval_meeting

are infinite, whereas Allen’s Interval Algebra allows finite models. These differences raise the
question of which ontology actually underlies the interval algebra.

We begin this section by describing the logical theory that captures the composition table
for Allen’s Interval Algebra, and then search for the time ontology that is equivalent to it.

3.1 First-Order Theory of Allen’s Interval Algebra
To specify the first-order theory Tallen of Allen’s Interval Algebra, we follow [3] and we
assume that for each cell in the composition table, we have a first-order sentence of the form

Ri(x, y) ∧Rj(y, z) ⊃ T1(x, z) ∨ ... ∨ Tn(x, z)

where CT (Ri, Rj) = {T1, ..., Tn}. For example, the following sentence is the axiom in which
corresponds with CT (meets, ends):

meets(x, y) ∧ ends(y, z) ⊃ (overlaps(x, z) ∨ during(x, z) ∨ starts(x, z)).

Since the composition table consists of 13× 13 cells, Tallen must contain 169 axioms corres-
ponding with the table. We will denote this set of axioms as Tallen_compose.

In addition to these axioms, we assume that for each interval algebra relation R1, Tallen

contains a sentence of the following form stating that the relations are pairwise disjoint (PD):

R1(x, y) ⊃ ¬(R2(x, y) ∨ ... ∨R13(x, y))

where R2, ..., R13 are interval algebra relations other than R1. The following sentence, for
example, is the PD axiom corresponding with meets:

meets(x, y) ⊃ ¬[before(x, y) ∨ starts(x, y) ∨ ends(x, y) ∨ overlaps(x, y) ∨ during(x, y)
∨met_by(x, y) ∨ after(x, y) ∨ started_by(x, y) ∨ ended_by(x, y)
∨ overlapped_by(x, y) ∨ contains(x, y) ∨ (x = y)].
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As there are 13 interval algebra relations, Tallen contains 13 PD axioms; we will denote the
disjointness axioms by Tallen_disjoint.

Finally, Tallen contains an axiom that specifies that the interval algebra relations are
jointly exhaustive:

meets(x, y) ∨ before(x, y) ∨ starts(x, y) ∨ ends(x, y) ∨ ends(x, y) ∨ overlaps(x, y)
∨ during(x, y) ∨ ∨met_by(x, y) ∨ after(x, y) ∧ started_by(x, y)
∨ ended_by(x, y) ∧ overlapped_by(x, y) ∨ contains(x, y) ∨ (x = y).

We will refer to this axiom as Texhaustive.
All other sentences in Tallen are those which are entailed by the 169 + 13 + 1 above-

mentioned axioms. Thus,

Tallen = Tallen_compose ∪ Tallen_disjoint ∪ Texhaustive

Models of Tallen are equivalent to solutions of temporal constraints that are expressed
using the interval relations, but the question of a characterization of models of Tallen remains
unresolved. In the following subsections, we identify the time ontology that is equivalent to
Tallen, and in the latter part of the paper, we characterize the models of this time ontology
up to isomorphism.

3.2 Tallen and Tinterval_meeting

Hayes and Allen ([1]) state that the interval algebra composition table can be derived from
the ontology of time intervals. More precisely, the first-order theory of the interval algebra
composition table can be entailed from a definitional extension of Tinterval_meeting:

I Definition 1 (adopted from [8]). Let T be a first-order theory and Π be a set containing
sentences of the following form 2

R(x1, ..., xn) ≡ Φ(x1, ..., xn)

where R is a predicate which is not in Σ(T ) and Φ is a formula in L(T ) in which at most
variables x1, ..., xn occur free. T ∪Π is called a definitional extension of T .

I Theorem 2. Tallen is entailed by Tinterval_meeting ∪ Tinterval_rel.

Proof. Using the automated theorem prover Prover9 [10], we have shown3 that Tinterval_meeting∪
Tinterval_rel entails for each axiom Φ of Tallen,

Tinterval_meeting ∪ Tinterval_rel |= Tallen

J

This Theorem is equivalent to saying that Tallen has an interpretation in Tinterval_meeting.
A theory T1 has a relative interpretation [5] in another theory T2 if every sentence in T1 can
be translated into a sentence in T2. In other words, for all sentences Φ ∈ L(T1), if T1 entails

2 For a theory T , Σ(T ) denotes the signature of T , i.e., the set of non-logical symbols used in sentences of
T ; L(T ) denotes the language of T , i.e., the set of all first-order formulae generated by symbols in Σ(T );
Mod(T ) denotes the class of all models of T .

3 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/intervalmeeting2allen/
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Φ, then T2 entails a translation of Φ into the language of T2. The work of [6] shows that if
a definitional extension of T2 entails T1, translations for sentences of T1 is obtained based
on the formulas which define predicates of T1 in the definitional extension. For instance, a
translation of Axiom (5) of Tinterval_meeting into the language of Tallen can be obtained by
replacing formulas with before literals (whose definition can be found in Figure 2). The
result is the following sentence, which provably is a sentence in Tallen:

(∀i, j, m)before(i, j) ∧meets(j, m) ⊃ before(i, m)

Theories T1 and T2 are mutually interpretable iff they are relatively interpretable in
each other. In our case, Tinterval_meeting is not relatively interpretable in Tallen, since Tallen

cannot entail all axioms of Tinterval_meeting:
I Proposition 1.

Tallen 6|= (∀i)(∃j) meets(i, j)

Proof. The model generated by Mace4 can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/finite.model/.

J

By Proposition 1, Tallen does not interpret Tinterval_meeting because it allows finite models,
whereas all models of Tinterval_meeting are infinite. To achieve mutual interpretability,
we need to weaken Tinterval_meeting, However, simply removing the infinity axiom from
Tinterval_meeting doesn’t work:
I Proposition 2. Let Tfinite be the set of all axioms in Tinterval_meeting except Axiom (2).

Tfinite ∪ Tinterval_rel |= Tallen_compose ∪ Tallen_disjoint

Tfinite ∪ Tinterval_rel 6|= Texhaustive

Proof. In the proofs of Theorem 2, Axiom (2) is not used to entail any sentence in
Tallen_compose or Tallen_disjoint.

A model of Tfinite ∪ Tinterval_rel that falsifies Texhaustive can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/exhaustive.model.

J

We therefore need a theory that is stronger than Tfinite but weaker than Tinterval_meeting.
The natural question is therefore: what is the theory in the Hinterval_meeting Hierarchy that
is entailed by Tallen?

3.3 Bounded Meeting
In this section, we search for a theory that is weaker than Tinterval_meeting, yet which is still
able to interpret Tallen. We begin by taking a closer look at the role that the Infinity Axiom
plays in the proofs for Theorem 2. This axiom guarantees that each interval is bounded by
an earlier and later interval. If we also look at the definitions of the interval relations starts,
ends, overlaps, and during, we see that each definition entails the existence of two intervals
– one that is earlier than the others and one that is later than the others.

Inspired by this observation, we propose the definition of a new relation, prec, which
specifies an ordering over intervals. The new axioms guarantee the existence of lower and
upper bounds for each pair of intervals with respect to this ordering.

colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/finite.model/
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/exhaustive.model
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(∀i, j) meets(i, j) ⊃ timeinterval(i) ∧ timeinterval(j) (11)
(∀i, j, k, m) meets(i, k) ∧meets(j, k) ∧meets(i, m) ⊃ meets(j, m) (12)
(∀i, j, k, l) (meets(i, j) ∧meets(k, l)) ⊃
(meets(i, l) ∨ ((∃n) ((meets(i, n) ∧meets(n, l)) ∨ (meets(k, n) ∧meets(n, j))))) (13)
(∀i, j) meets(i, j) ⊃ ¬meets(j, i) (14)
(∀i, j, k, m) meets(i, j) ∧meets(j, k) ∧meets(k, m) ⊃
(∃n) meets(i, n) ∧meets(n, m) (15)
(∀x, y)(∃z) prec(x, z) ∧ prec(y, z) (16)
(∀x, y)(∃z) prec(z, x) ∧ prec(z, y) (17)
(∀x, y) prec(x, y) ≡ (meets(x, y) ∨ ((∃z) meets(x, z) ∧meets(z, y)) ∨ (x = y)) (18)

Figure 3 The axioms of Tbounded_meeting.

I Proposition 3.

Tinterval_meeting |= (∀x, y)(∃z) prec(x, z) ∧ prec(y, z)

Tinterval_meeting |= (∀x, y)(∃z) prec(z, x) ∧ prec(z, y)

Proof. The proof generated by Prover9 can be found at
colore.oor.net/allen_interval_algebra/theorems/interval-bounded/. J

Thus, Tbounded_meeting is entailed by Tinterval_meeting, and it entails Tfinite.

3.4 Tallen and Tbounded_meeting

Although Tbounded_meeting is weaker than Tinterval_meeting, it is strong enough to relatively
interpret Tallen:

I Theorem 3. Tallen is entailed by Tbounded_meeting ∪ Tinterval_rel.

Proof. Using Prover9, we have shown4 that

Tbounded_meeting ∪ Tinterval_rel |= Φ

for each axiom Φ of Tallen. J

Unlike Tinterval_meeting, the theory Tbounded_meeting allows finite models, but is it weak
enough to be interpreted by Tallen?

I Proposition 4.

Tallen 6|= (∀i, j)(∃k)(meets(i, k)∨before(i, k)∨(i = k))∧(meets(j, k)∨before(j, k)∨(k = j))

4 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/
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(∀x, y) before(x, y) ⊃ (∃z) meets(x, z) ∧meets(z, y) (19)
(∀x, y) overlaps(x, y) ⊃ (∃z) ends(z, x) ∧ starts(z, y) (20)
(∀x, y) during(x, y) ⊃ (∃z) ends(x, z) ∧ starts(z, y) (21)
(∀x, y) starts(x, y) ⊃ (∃z) meets(z, x) ∧meets(z, y) (22)
(∀x, y) ends(x, y) ⊃ (∃z) meets(x, z) ∧meets(y, z) (23)
(∀x, z) starts(x, z) ⊃ (∃y) before(x, y) ∧meets(z, y) (24)
(∀x, z) ends(x, z) ⊃ (∃y) before(y, x) ∧meets(y, z) (25)

Figure 4 Tallen_exist: Additional axioms to extend Tallen.

Proof. The model generated by Mace4 that falsifies the sentence can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/bounded.model/.

J

Thus, Tallen cannot interpret Tbounded_meeting either, yet a cursory glance at the definitions
of the temporal relations in Tinterval_rel seems to indicate that it should. In the preceding
section, we used the consistency-based definition [3] to axiomatize Allen’s Interval Algebra.
An alternative approach to the axiomatization of the composition table is known as the
extensional definition approach [3] – the composition of R1 with R2 is the set of ordered
pairs 〈x, y〉 such that for some z, we have 〈x, z〉 ∈ R1 and 〈z, y〉 ∈ R2. For example, the
extensional definition axiom for the cell CT (meets, meets) is

(∀x, y) before(x, y) ≡ (∃z) meets(x, z) ∧meets(z, y)

If we look closely, we notice that there are sentences from the extensional definition
of the composition table that are entailed by the definitions of the relations in Figure 2.
In particular, each sentence in Figure 4 is entailed by Tinterval_meeting ∪ Tinterval_rel, and
each of these sentences corresponds to the converse of an axiom from the consistency-based
definition of the composition table. Since we are ultimately interested in understanding the
relationship between Tinterval_meeting and the composition table, we will extend the theory
Tallen with the sentences of Figure 4, and refer to the resulting theory as T ∗allen.

I Lemma 4. Tbounded_meeting ∪ Tinterval_rel entails T ∗allen.

Proof. Using Prover9, we have shown5 that

Tbounded_meeting ∪ Tinterval_rel |= Φ

for each axiom Φ of Tallen_exist (and hence T ∗allen). J

I Lemma 5. T ∗allen entails Tbounded_meeting.

5 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/

colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/bounded.model/
colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/
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Proof. Using Prover9, we have shown6 that T ∗allen |= Φ for each axiom Φ of Tbounded_meeting.
J

These two Lemmas, it can be shown that Tallen and Tbounded_meeting are mutually
interpretable [5] in each other. Relative interpretation alone does not guarantee a one-to-one
correspondence between models of the theories. When T1 is interpretable in T2, we can
only show every model of T2 defines a model of T1 using the translation definitions between
T1 and T2. Thus, establishing mutual relative interpretation between Tbounded_meeting and
Tallen does not help with characterizing all models of Tallen.

To study models of Tallen based on models of Tbounded_meeting, we need a notion stronger
than relative interpretation:

I Definition 6 ([8]). Two theories T1 and T2 are logically synonymous iff they have a common
definitional extension.

Considering Definition 6, it is easy to see that T1 and T2 are synonymous iff there exist two
sets of translation definitions, ∆ and Π, such that T1 ∪Π is a definitional extension of T1,
T2 ∪∆ is a definitional extension of T2, and T1 ∪Π and T2 ∪∆ are logically equivalent.

When two theories are synonymous, there is a one-to-one correspondence between their
models such that the corresponding models can be defined based on each other [11].

I Theorem 7. Tbounded_meeting is logically synonymous with T ∗allen.

Proof. By Lemma 4 and Lemma 5, Tbounded_meeting and T ∗allen are mutually interpretable.
Using Prover9, we have shown7 that T ∗allen |= Φ for each axiom Φ of Tinterval_rel.
Thus, Tbounded_meeting ∪ Tinterval_rel and T ∗allen are logically equivalent. J

According to [11], synonymous theories axiomatize the same class of structures. Thus,
Tbounded_meeting and T ∗allen are semantically equivalent and only differ in signature.

In what sense has this achieved our objective, since we have we have shown that the
time ontology Tbounded_meeting is synonymous with an extension of first-order axiomatization
of Allen’s interval algebra, rather than the original axiomatization? First, the additional
axioms in Tallen_exist that we need to prove Theorem 7 are all entailed from the definitions
of the interval relations; any attempt to use a weaker axiomatization of the composition table
would require us to change these defintions. However, these definitions capture the intended
semantics of the interval relations, so any weaker definition would lead to unintended models.
The underlying ontology of time intervals therefore plays no role in entailment of the axioms
in Tallen_exist.

All relations in the composition table can be deduced from T ∗allen as it is an extension of
Tallen. In addition, for every entry CT (Ri, Rj) of the composition table and every interval
algebra relation S 6∈ CT (Ri, Rj) we proved a sentence of the form: Ri(x, y) ∧ Rj(y, z) ⊃
¬S(x, z)

Thus, the additional axioms of T ∗allen does not change the composition table, but only
eliminate those models of Tallen that do not satisfy the axiomatic definitions of the interval
relations.

6 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/

7 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/
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4 Model-Theoretic Characterization of Tbounded_meeting

It is tempting to see the equivalence between Tallen and Tbounded_meeting as an intellectual
curiosity that does not give us any new insights into the interval algebra. Nevertheless, if
we recall that Allen’s Interval Algebra is primarily used in constraint satisfaction problems,
in which one constructs a satisfying interpretation of a set of expressions in the signature
of Tallen, then the set of all possible solutions of interval algebra problems, excluding those
eliminated by Tallen, is equivalent to the set of all possible models of Tbounded_meeting. In this
section, we provide a characterization of the models8 of Tbounded_meeting up to isomorphism,
by first specifying a class of mathematical structures, and then showing that Tbounded_meeting

axiomatizes this class of structures.

4.1 Representation Theorem for Models of Tbounded_meeting

Verification is concerned with the relationship between the models of the axiomatization of
the ontology and a class of mathematical structures. In particular, we want to characterize
the models of an ontology up to isomorphism and determine whether or not these models
are equivalent to the intended models of the ontology. In this section, we characterize the
models of Tbounded_meeting.

Since meets is a asymmetric binary relation, we turn to directed graphs for the underlying
structures:

I Definition 8. A directed graph is a pair 〈V, A〉 such that A ⊆ V × V .

Before stating the representation theorem, we need some notation.

I Definition 9. LetM = (V, A) be a directed graph. For each x ∈ V ,

N(x) = {y : (x, y) ∈ A} N−1(x) = {y : (y, x) ∈ A}

Nk(x) = N(Nk−1(x)) N−k(x) = N−1(N−(k−1)(x))

Dk(x) =
i=k⋃
i=1

N i(x) D−k(x) =
i=k⋃
i=1

N−i(x)

I Definition 10. Mbounded_meeting is the following class of structures:
M∈Mbounded_meeting iffM = (V, A) is a directed graph such that

1. N(x) ∩N2(x) = ∅ for any x ∈ V ;
2. N3(x) ⊆ N2(x) for any x ∈ V ;
3. for any x, y ∈ V ,

D2(x) ∩D2(y) 6= ∅

D−2(x) ∩D−2(y) 6= ∅

4. N(x) ⊆ N2(y) or N(y) ⊆ D2(x), for any x, y ∈ V ,

I Theorem 11. There exists a bijection
ϕ : Mod(Tbounded_meeting)→Mbounded_meeting such that

8 We denote structures by calligraphic uppercase letters, e.g. M,N ; elements of a structure by boldface
font, e.g., a, b; and the extension of predicate R in a structureM by RM.
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1. 〈x〉 ∈ timeinterval iff x ∈ V ϕ(M);
2. 〈x, y〉 ∈meetsM iff (x, y) ∈ Aϕ(M).

Proof. (Sketch) Condition 1 in Definition 10 is equivalent to the sentence

(∀x, y, z) meets(x, y) ∧meets(y, z) ⊃ ¬meets(x, z)

and using Prover99, we can show that this sentence is logically equivalent to Axiom (12).
Condition 2 in Definition 10 is equivalent to Axiom (15).
Condition 3 in Definition 10 is equivalent to Axioms (16) and (16).
Condition 4 in Definition 10 is equivalent to Axiom (13).
Axiom (14) is equivalent to the property thatM is a directed graph. J

We can therefore refer interchangably to the models of Tbounded_meeting and structures
in Mbounded_meeting.

4.2 Representation Theorem for Mbounded_meeting

Although Theorem 11 characterizes the models of Tbounded_meeting, it leaves unresolved
the explicit characterization of Mbounded_meeting, and a deeper understanding of how to
construct models of Tbounded_meeting. In this section, we characterize the class of directed
graphs that satisfy the conditions in Definition 10.

Although structures in Mbounded_meeting are directed graphs, it will be easier to construct
them from undirected graphs, allowing us to exploit a wider range of existing work in graph
theory.

I Definition 12. An undirected graph is a pair G = 〈V, E〉 of sets such that E ⊆ {V }2.

Directed and undirected graphs are related to each other through the notion of orientation.

I Definition 13. G1 = 〈V, A〉 is an orientation of an undirected graph G2 = 〈V, E〉 iff for
each (x, y) ∈ E, either (x, y) ∈ A or (y, x) ∈ A.

If G1 is a directed graph, then G2 is the undirected graph for G1 iff G1 is an orientation
of G2.

We therefore need to identify the class of graphs that correspond to structures in
Mbounded_meeting.

4.2.1 Twin-free Graphs
We first notice that

Tbounded_meeting 6|= (∀x, y, z, u)meets(x, y)∧meets(x, z)∧meets(y, u)∧meets(z, u) ⊃ (y = z)

Thus there exist models in which there exist multiple intervals that meet and are met by the
same intervals.

I Definition 14. Let G = (V, E) be a graph. Two vertices x, y ∈ V are twins iff for all other
vertices w, we have (x, w) ∈ E iff (y, w) ∈ E.

G is twin-free iff it contains no twins.

9 color.oor.net/allen_interval_algebra/theorems/triangle_free/
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Figure 5 Short models.

I Definition 15. Suppose G1 = (V1, E1) and G2 = (V2, E2) are graphs such that V1 ⊂ V2
and E1 ⊂ E2. G2 is a twinned extension of G1 iff each x ∈ V2 \ V1 is a twin of some y ∈ V1.

I Lemma 16. If M ∈ Mbounded_meeting, and N is a twinned extension of M, then N ∈
Mbounded_meeting.

Proof. If x, y ∈ V are twins, then

Nk(x) = Nk(y) N−k(x) = N−k(y)

so that N satisfies all conditions in Definition 10 and hence N ∈Mbounded_meeting. J

I Lemma 17. EachM∈Mbounded_meeting contains a unique twin-free subgraph.

Proof. If x, y ∈ V are twins, then removing y does not change Nk(x) or N−k(x), so that
the conditions in Definition 10 will be satisfied by the subgraph of M that is induced by
V \ {y}. J

Thus, we can characterize Mbounded_meeting by characterizing the twin-free graphs in
Mbounded_meeting.

4.2.2 Building Blocks
We now consider some special graphs that serve as the basic structures from which models
of Tbounded_neeting are constructed.

I Definition 18. A short model is an undirected graph that is isomorphic to either P2 (path
graph with two vertices), P3 (path graph with three vertices), or C5 (cyclic graph with five
vertices).

The three short models are depicted in Figure 5, and they each correspond to a different
set of temporal relations. The orientation of P2 is the smallest model of Tbounded_meeting

with a nontrivial extension of the meets relation. The orientation of P3 is the smallest model
of Tbounded_meeting with a nontrivial extension of the before relation. The orientation of C5
is the smallest model of Tbounded_meeting with a nontrivial extension of the starts and ends
relations.

Note that the orientation of a cyclic undirected graph can be a directed acyclic graph.

I Lemma 19. IfM is an orientation of a short model G, thenM∈Mbounded_meeting.

I Definition 20. The H graph is the connected graph on six vertices such that exactly two
vertices have degree 3 and the remaining vertices have degree 1.



M. Grüninger and Z. Li 16:13

a cb d

h

gf

e
a

c

b

h

gf

c

d

h

gf

e

(i) (ii)

Figure 6 The model H ∪· H, and its edge-decomposition into two H graphs.
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Figure 7 A depiction of the interval relations corresponding to an H ∪· H graph.

Figure 6(ii) shows two examples of H. Now H by itself is not the undirected graph for
any structure in Mbounded_meeting; however, we can use H to construct a graph that will
play a critical role in the characterization of Mbounded_meeting.

We first need to specify a way in which new graphs can be constructed from existing
ones.

I Definition 21. A graph G = 〈V, E〉 is edge-decomposable into a set of graphs H iff
1. Hi ⊂ G, for each Hi ∈ H;
2. Ei ∩ Ej = ∅, for each Hi = 〈Vi, Ei〉 and Hj = 〈Vj , Ej〉;
3. E =

⋃
i Ei.

Thus, a graph G is edge-decomposable into a set of subgraphs iff the set of edges in G
can be partitioned. Figure 6(i) depicts the graph H ∪· H; it is edge-decomposable into the
two graphs in Figure 6(ii). We will use the notation G = H1 ∪· ... ∪· Hn to indicate that G is
edge-decomposable into H1, ...,Hn.

Elsewhere in graph theory, H ∪· H is the unique extremal graph of order 8, that is, it
contains the maximal number of edges for a graph of girth10 5 on 8 vertices.

I Lemma 22. IfM is an orientation of H ∪· H, thenM∈Mbounded_meeting.

Figure 7 illustrates how H ∪· H is related to the interval relations.

4.3 Characterization of Mbounded_meeting

In the preceding section, we explicitly identified some graphs that are structures inMbounded_meeting,
but we are ultimately interested in characterizing all such graphs.

10The girth of a graph G is the length of the shortest cycle in G.
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I Definition 23. A graph G is triangle-free iff it does not contain any induced cycles of
length 3 (i.e. G contains no induced K3 subgraphs).

I Definition 24. A graph G is 2-connected iff there exist two vertex-disjoint paths between
any two vertices in G.

A well-known result in graph theory [4] shows that a graph is 2-connected iff each pair of
vertices are elements of the same cycle.

I Definition 25. The distance between two vertices in a graph G is the number of edges in
a shortest path that connects the two vertices.

The diameter of a graph G (denoted by diam(G)) is the greatest distance between any
two vertices of G.

I Lemma 26. Suppose M ∈ Mbounded_meeting and let G be the undirected graph for M
such that G is not a short model.

G is a 2-connected triangle-free graph such that diam(G) = 3.

Proof. G is triangle-free iff for any x ∈ V , N(x)∩N2(x) = ∅, which is equivalent to condition
(1) in Definition 10.

By condition (3) in Definition 10, there are at most two vertices between any x, y, so
that diam(G) = 3 (and hence G is connected).

Suppose G is not 2-connected; since G is not a short model, there must exist x, y ∈ V

such that there is a unique P4 subgraph with x and y as endpoints. However, this violates
condition (2) in Definition 10. J

Note that the converse of this Lemma does not hold; we need to determine which
2-connected triangle-free graphs are structures in Mbounded_meeting.

I Theorem 27. SupposeM is the orientation of a twin-free graph.
M∈Mbounded_meeting iffM is the orientation of a short model or of a graph in which

any two elements x, y are elements of a subgraph G ⊆M such that

G ∼= H ∪· H

Proof. (Sketch) By Lemma 26, any two elements x, y are elements of an induced P2, P3, C5,
or C6 subgraph.

By condition (2) in Definition 10, there exist additional elements v1, v2, v3 ∈ V that
create new C5 subgraphs, so that the C6 subgraph generates an H∪· H subgraph that contains
x, y. J

Finally, we can give a constructive characterization for finite structures inMbounded_meeting.

I Definition 28. Let G1,G2 be two graphs that each contain an induced Pk subgraph.
A graph obtained from G1 and G2 by identifying the two subgraphs is a Pk-gluing of G1

and G2.

I Definition 29. A full graph is a graph in which each P4 subgraph is an edge cover of an
induced C5 subgraph.

I Theorem 30. Suppose M ∈ Mbounded_meeting such that M is twin-free and finite, and
that G is the undirected graph forM.

G is not 2-connected iff G ∼= P2 or G ∼= P3.
G is 2-connected iff there exists a sequence G1, ..., G such that
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1. G1 ∼= Pn;
2. G is a full graph;
3. Gi+1 is the result of P4-gluing Gi and C5.

Proof. (Sketch)
By Lemma 19 and Lemma 26, G is connected but not cyclic iff G ∼= P2 or G ∼= P3.
Suppose G is 2-connected.
By Theorem 27, each pair of vertices are elements of an H ∪· H subgraph, so that G is a

full graph.
Let Pk be the longest path in G. By condition (2) in Definition 10, every P4 subgraph is

an edge cover of an induced C5 subgraph, which is equivalent to the P4-gluing of a subgraph
to C5. J

Recall the original motivation for this work – since all applications of Allen’s Interval
Algebra consists in the specification of temporal constraints and the use of constraint
satisfaction techniques to find solutions. Such solutions correspond to models of T ∗allen. Given
the synonymy of T ∗allen and Tbounded_meeting (Theorem 7), these last two results not only give
us a complete characterization of the finite models of Tbounded_meeting up to isomorphism, but
they also give us a complete characterization of the solutions of a set of temporal constraints.

5 Summary

Constraint satisfaction with relational calculi such as Allen’s Interval Algebra has been
the predominant application of temporal concepts within commonsense reasoning. Yet in
some way, this has diminished the role played by the different time ontologies that provide
their foundations. It has long been known that the first-order theory of Allen’s Interval
Algebra is interpretable by certain ontologies of time intervals, in particular, the ontology
Tinterval_meeting. This perspective has been considered sufficient for showing that Allen’s
Interval Algebra was in some sense sound with respect to its ontological foundations. In this
paper, we have specified an ontology Tbounded_meeting that is weaker than Tinterval_meeting

and which is logically synonymous with Allen’s Interval Algebra. Finally, we have provided
a characterization of the models of Tbounded_meeting up to isomorphism, by first specifying a
class of mathematical structures, and then showing that Tbounded_meeting axiomatizes this
class of structures. This characterization gives us insights into the set of all possible solutions
for a set of temporal constraints that can be specified by Allen’s Interval Algebra.

The next step in this direction is a full characterization of the infinite models of
Tbounded_meeting, which would provide an alternative characterization of the models of
Tinterval_meeting. It would also enable us to explore extensions of Tbounded_meeting that
axiomatize dense orderings. This is equivalent to revisiting Hayes’ and Ladkins description
of models with respect to intervals on Q and Z. Formalize these results as representation
theorems.

Another major question is the relationship of Tbounded_meeting to other ontologies of time
intervals, such as periods [12], in which the primitive relations are precedence and inclusion
rather than meets. In particular, this would require a characterization of the mereology of
intervals that is definable within models of Tinterval_meeting.
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