
Chapter 16

Enterprise Modelling

Michael Gruninger
National Institute of Standards and Technology

E-Mail: gruning@nist.gov

Abstract: An enterprise model is a computational representation of the structure, activities, processes,
information, people, behaviour, goals and constraints of a business, government or other enterprise. An
enterprise model can be both descriptive and definitional and it may cover both 'what is' and 'what should
be'. The role of an enterprise model is to achieve model-driven enterprise design, analysis, control1 and
evaluation. However, in order to effectively support the use of enterprise models in practice, it has become
evident that more formal approaches to enterprise modelling need to be employed. This chapter considers
the application of ontologies to support enterprise modelling. It begins with an overview of the
applications of enterprise modelling industrial practice and identifies various formal requirements for
enterprise models from these applications. Current research in enterprise modelling ontologies and the
languages used to specify these ontologies are reviewed, and a set of challenge problems for future research
is proposed

1. Applications of Enterprise Modelling

An enterprise model is a computational representation of the structure, activities,
processes, information, people, behaviour, goals and constraints of a business, government or
other enterprise. An enterprise model can be both descriptive and definitional and it may \
cover both 'what is' and 'what should be'. The role of an enterprise model is to achieve
model-driven enterprise design, analysis, control2 and evaluation. We will begin by
considering these applications of enterprise modelling and the requirements that they impose
on any formal approach to the representation and specification of enterprise models.

0.1. Enterprise Integration.

Interoperability among enterprise applications is often hindered because the applications
use different terminology and representations of the domain [Ciociou et al. 2001]. These
problems arise most acutely for systems that must manage the heterogeneity inherent in
various domains and integrate models of different domains into coherent frameworks ().

For example, consider concurrent engineering. A design engineer creates a product
specification using a CAD system; this design must be integrated with the company's product
data management (PDM) system, which will represent not only the product's features and
geometry, but may also include notions such as design intent, additional product requirements
and a bill-of-materials (BOM) decomposition. This design must be shared by the engineer
with the process design team (which uses the BOM to specify a set of manufacturing
processes whose final output may be a product with the desired features). Any version of the

1 using executable models (e.g. such as the ones CIMOSA aims to produce)

2 using executable models (e.g. such as the ones CIMOSA aims to produce)

Handbook of Enterprise Architecture

1 2

process design may be shared with the process planning team, which specifies the various
machines, tools, and materials that will be required by the manufacturing processes. If the
process design team identifies any problems with these processes, they must be communicated
to the product designer, who may need to modify the design to guarantee manufacturability.
The production planning team will need to share the process plan, since it must be included
within the production plan, together with the process plans of other products. Schedulers take
the production plan and add further constraints on the occurrence of various processes. If
either the production planner or scheduler discover a problem (such as unanticipated
bottleneck resources), the underlying process plan or production plan may need to be revised
upstream (by earlier teams).

Such integration occurs, for example, in business process re-engineering, where enterprise
models integrate processes, organizations, goals and customers. Even when the applications
involved use the same terminology, they often associate different semantics (meaning) with
the terms. This clash over the meaning of the terms prevents the seamless exchange of
information among application programs. Typically, point-to-point translation programs are
written to enable pair-wise communication between specific applications . However, as the
number of applications used in enterprises has increased and the information has become
more complex, it has been more difficult for software developers to provide translators
between every pair of applications that must cooperate. What is needed is some way of
explicitly specifying the terminology of the applications in an unambiguous fashion, so that
every application could refer to such common meanings – whether directly or indirectly.

Figure : The challenge of interoperability.

0.1. Reusability.

Knowledge bases that capture the domain knowledge of engineering applications are often
tailored to specific tasks and projects. When the application is deployed in a different

Handbook of Enterprise Architecture

2 2

domain, it does not perform as expected, often because assumptions are implicitly made
about the concepts in the tailored application, and these assumptions are not generic across
domains. For example, machine models are often designed for a particular set of properties
specific to particular (types of) machines, rather than characterizing generic properties of
machines, such as concurrency constraints, setup activities, and operating conditions.
Reusability can be achieved through shared understanding of generic concepts that span across
multiple projects, tasks and environments3.

One of the bottlenecks in enterprise engineering is enterprise model acquisition. Models are
often constructed for single projects, with little reuse. The dream is to create new models
from a repository of existing (partial or particular) enterprise models. Partial models would
then be combined into an integrated model of the entire enterprise, thus supporting the
iterative refinement/elaboration of the enterprise model. Existing models could be modified
to capture the challenges posed by new situations, while templates for various classes of
enterprises would allow rapid modelling through instantiation.

0.1. Enterprise Analysis.

An integrated enterprise model provides the language used to specify an explicit definition
of an enterprise. The easiest application of such an enterprise model is in checking the
consistency of the enterprise model with respect to additional constraints. This may be an
internal consistency check (in which the enterprise model itself is tested to identify
enterprise design problems) or it may be an external consistency check (which compares the
intended behaviour of the enterprise as expressed in the model with the actual behaviour of
the enterprise).

For re-engineering, enterprise engineers need to explore alternative models in the design of
enterprises, spanning organisational structure and behaviour. In order to reason about
alternative designs for enterprises, they need to reason about different possible sets of
constraints for enterprises within the language. Such reasoning can often be expressed by
queries whose answers can be deduced from the enterprise model – e.g.: Can a process be
performed in a different way, or can the enterprise achieve some goal in a different way? Can
the constraints in the enterprise be relaxed, such that we can improve performance or
achieve new goals?

Enterprise engineers also need to be able to determine the impact of changes on all parts of
the enterprise, which involves hypothetical reasoning. For example, if one of the policies is
relaxed, how will this affect the quality of products or services provided by the enterprise? If
a new kind of machine is purchased, how will this affect the activities that are performed? If
the enterprise changes the activities that are performed, how will this change resource
consumption?

A related problem is the use of benchmarking in the re-engineering process. In
benchmarking, performance is compared between enterprises and then processes and
3 NB Models with various degrees of reusablity may also be achieved by using a mix of generic and particular

properties. Such models are considered partial - i.e., where only some properties are particularized, the rest
being generic.

Handbook of Enterprise Architecture

3 2

practices are adopted from enterprises that are the best performers. However, not all
practices can be adopted from other enterprises; the key is to realize that one must identify
opportunities for improvement by analyzing the successes and failures of similar enterprises.
Herein lies the problem -- what is a similar enterprise? What is compared among enterprises
when using the benchmarking approach? Goals and activities cannot be compared among
enterprises unless all constraints and assumptions about the enterprise and its environment
are made explicit.

0.1. Model-driven Enterprise Operation

In many Business-to-Business (B2B) E-commerce applications, enterprises face the same
integration problems among enterprise systems, although it often involves the semantic
integration of intelligent agents that are intended to automate business processes. Emergence
of the ‘Semantic Web’ technologies carries the promise of new advances in the area of inter-
enterprise and B2B interoperability, as it has a potential to provide a shared basis for
capturing semantics of enterprise-level activities and concepts. However, there is currently a
gap between the business processes and organizational structures that are defined within an
enterprise model and the enterprise applications that either automate or support these
business processes. The behaviour of agents within the enterprise often does not conform to
the constraints defined within the enterprise model.

1. Ontologies

To support these applications of enterprise models, there has
been an increasing interest in Generic Enterprise Models (GEM) [Fox and Gruninger 1998]. A
GEM is an object library that defines the classes of objects that are generic across a type of
enterprise, such as manufacturing or banking, and can be employed (through instantiation) in
defining a specific enterprise. The benefit of such an enterprise model is that the object
library supports reusability and integration through a common conceptualization. The
problem is that different representations of the same information may be based on
different assumptions about the world, and use differing concepts and terminology -- and
conversely, the same terms may be used in different contexts to mean different things.
Often, the loosely defined natural-language definitions associated with the terms will be too
ambiguous to make the differences evident, or will not provide enough information to resolve
the differences.

To address these challenges, various groups within industry, academia, and government have
been developing sharable and reusable models known as ontologies. The most
commonly quoted definition of an ontology is “a formal,
explicit specification of a shared conceptualization" [Gruber
1993]. In this context, a conceptualization refers to an
abstract model of how people think about things in the world,
usually restricted to a particular subject area. An explicit
specification means that the concepts and relationships of
the abstract model are given explicit names and definitions.
The name is a term, while the definition is a specification
of what the term means. Formal means that the specification

Handbook of Enterprise Architecture

4 2

is encoded in a language whose formal properties are well
understood – in practice, this almost always means logic-
based languages. Formality is an important way to remove
ambiguity that is prevalent in natural language; it also
opens the door for automated processing of semantics.

It is common to refer to taxonomies, thesauri, data dictionaries, data models and other
representations as ontologies, despite their lack of formality. Nevertheless, there is a core
essence that is common to virtually all uses of the term ‘ontology’. This core is that there
are two essential components of any ontology :

• a vocabulary of terms, and
• some specification of meaning for the terms.

What distinguishes the many types of things that people refer to as ontologies is the degree
and manner of specifying meaning. This gives rise to a kind of continuum of kinds of
ontology ([Gruninger and Uschold 2002]). At one extreme, we have very lightweight
ontologies that may consist of terms only, with little or no specification of meaning (the
degenerate case of an ontology). At the other end of the spectrum we have rigorously
formalized logical theories which comprise the ontologies (see). Moving to the right along
the continuum, the amount of meaning specified increases (thus reducing ambiguity), the
degree of formality increases, and there is increasing support for automated reasoning.

Figure : Kinds of Ontologies – There are many kinds of things that people call ontologies. Moving to
the right there is reduced ambiguity and increased amount of meaning, formality and support for
automated reasoning. Not everyone agrees on what is, or what is not an ontology. A line has been

arbitrarily drawn, to the right of which there is quite broad agreement that they are ontologies. To the
left of the line, the agreement on ontologies is more controversial.

In the simplest case, the semantics are implicit only. Meaning is conveyed based on a shared
understanding derived from human consensus. A common example of this case is the typical
use of XML tags, such as price, address, or delivery date. Nowhere in the XML document,
nor anywhere else, does it say what these tags mean [Cover 98]. However, if there is an
implicit shared consensus about what the terms mean, then people can embed this implicit

Handbook of Enterprise Architecture

5 2

semantics in screen-scrapers and wrappers. Online travel agents and booksellers routinely do
this to find the best deals. From the perspective of mature commercial applications on the
Web, this is the current state of the art. The disadvantage of implicit semantics is that they
are rife with ambiguity because people often do disagree about the meaning of a term.

At the next point on the continuum, the semantics are explicit and are expressed in an
informal manner, often as text in a specification document. Until the natural language
processing problem is solved, only humans can make direct use of informally expressed
semantics. Examples of informal semantics that are expressed in text specification
documents are: 1) the meaning of tags in HTML, for example, <h2>, which means second
level header; 2) the meaning of the subClassOf relationship in the RDF Schema
language; and 3) the meaning of expressions in programming languages, such as Java.

The main disadvantage of implicit semantics is that there is still much scope for ambiguity.
This decreases one’s confidence that two different implementations (say of RDF Schema or
Java) will be consistent and compatible. Each Java implementation may be different in subtle
ways. Users may notice ‘features’ and start depending on them. This can result in problems if
interoperability is required, or if implementations change.

Finally, there is the possibility of explicit, formally specified semantics that are intended
for automated inference. Formally specified ontologies use a logical language, such as
DAML+OIL [Hendler & McGuinness 2001] and Knowledge Interchange Format (KIF)
([Genesereth & Fikes 1992], [Hayes & Menzel 2001]).. A formal ontology consists of a set
of sentences in this underlying logical language. Within mathematical logic these sentences
are also known as axioms, so that a formal ontology is also said to be axiomatized. The idea
is that when new terms are encountered, it is possible to automatically interpret something
about their meaning and thus how to use them. In order for an enterprise model to support
such inference, it must provide a set of rules of deduction together with a set of axioms. For
example, given an axiom stating that the works-for relation is transitive:

If X works-for Y and Y works-for Z, then X works for Z

and the facts that Alice works-for Bob and Bob works-for Carol, an inference system would
be able to automatically deduce that Alice works-for Carol.

1. Desiderata for Enterprise Modelling Ontologies

Based on the scenarios in the first section, what are the requirements that must be satisfied
by ontologies for enterprise modelling both in terms of their formality and their content?

0.1. Verification and Semantic Integration

If we are to support scenarios in which enterprise applications automatically share and
reuse information, we must provide guarantees that the applications completely understand
each other within the context of their shared domains. For example, eusability means that
enterprise models for new or re-engineered enterprises can be specified by extending (from
generic- and/or partial models) or modifying (from partial- and/or particular models)

Handbook of Enterprise Architecture

6 2

concepts defined in an existing ontology. Given an enterprise, the modelling task consists of
using the ontology to specify a set of expressions that captures the behaviour of the
enterprise. How does the engineer determine that he or she is using the correct set of
predefined concepts for modelling the enterprise? The engineer must understand the meaning
of the ontology that is being reused in the same way that was intended by the designer of the
ontology in question. .

The key notion in both semantic integration and reusability is that one must somehow
guarantee that the intended meaning of the terms in an ontology is the only meaning for
those terms that is consistent with the content of the ontology in conjunction with the
semantics of the ontology representation language. Even in cases where the ontology is not
explicit, one can examine the behaviour of the application and consider it to be completely
dependent on the inferences it makes, which inferences in turn are completely dependent on
the axioms in its ontologies and other internal knowledge. In effect, one may consider an
application’s behaviour to be constrained by the semantics of its ontology,
because any inferences made by the application must conform
to those semantics (see). If an application does not behave
as expected, or retrieve relevant information, or make
correct inferences, then it may be concluded that the
application in question does not share its semantics with
other applications. In this way, one can observe the
application's behaviour and infer information about the
semantics the application is using.

One must therefore explore the ramifications of explicit formally specified semantics and
the requirements that this approach imposes on both the ontology designer as well as the
enterprise application designer. There is a need to characterize the relationship between the
intended meaning of an application’s terminology and the possible meaning of terms in the
application’s ontology that must hold to support complete semantic integration and
reusability.

In most current ontology research, the languages for formal ontologies are closely related
to mathematical logic4, in which the semantics are based on the notion of an interpretation.
If a sentence is true in the interpretation, we say that the sentence is satisfied by the
interpretation. If every axiom in the ontology is satisfied by the interpretation, then the
interpretation is called a model of the ontology. With a formal ontology, the application’s
knowledge is specified as a theory, so that a sentence is consistent with that theory if there
exists a model of the theory that satisfies the sentence; a sentence can be deduced if it is

4 An interpretation consists of three parts:
1. a set of elements (known as the domain or universe of discourse),
2. a meaning function that associates symbols in the language with individual elements and sets of
elements in the domain (intuitively this specifies what the symbols mean), and

3. a truth function that associates truth values with sentences in the language.
For an excellent introduction to logic, see [Barwise et al 2000].

Handbook of Enterprise Architecture

7 2

satisfied by all models of the theory. Therefore, the application’s behaviour (and hence the
semantics of the application’s terminology) can be characterized by this implicit set of
models, which will hereafter be called the set of intended models.

Figure : The Ontological Stance – We can model a software application as if it were an inference system
with a formal ontology, and use this ontology to predict the set of sentences that the inference system

decides to be satisfiable. This is `the Ontological Stance' [Gruninger & Menzel 2002], and is analogous to
the intentional stance ([Dennett 1981]), which is the strategy of interpreting the behaviour of an entity by

treating it as if it were a rational agent which performs activities in accordance with some set of intentional
constraints, such as goals and obligations.

This characterization may be used to evaluate the adequacy of the application’s ontology
with respect to these intended models. An ontology is verified if and only if the set of models
of the axioms of the ontology is equal to the set of intended models for the application’s
terminology. In a language such as first-order logic, this is equivalent to saying that every
sentence that is provable from the axioms of the ontology is also an inference that the
application would make, and conversely, every inference that the application makes is
provable from the axioms of the ontology.This property of an ontology allows to make the
claim that any inferences drawn by the enterprise application using the ontology are faithful
to the application’s semantics. If an ontology is not verified, then it is possible to find
sentences that the application infers based on its intended models which are not provable
from the axioms of the ontology. Consequently, automated inference cannot be used to
determine that two enterprise applications can in fact be completely semantically integrated,
and semantic integration requires human intervention. The discussion in [Gruninger and
Uschold 2002] considers in some detail the challenges that must be addressed in achieving
semantic integration with unverified ontologies.

We can use an analogy from physics to illustrate the relationship between the ontology, the
intended models, and the domain in which the enterprise application is operating. Physicists

Handbook of Enterprise Architecture

8 2

use various classes of differential equations to model different phenomena. However, they do
not use ordinary linear differential equations to model heat diffusion and they do not use
second-order partial differential equations to model the kinematics of springs. If physicists
wish to model some phenomena using a class of differential equations, they can use the
equations to predict the behaviour of the physical system; if the predictions are falsified by
observations, then we have an inappropriate set of equations. Similarly, in this case one may
use some class of intended models to predict the inferences that an enterprise application
makes; if there is no physical scenario in the domain that corresponds to these inferences
then intuitively, the set of intended models is inappropriate

It is important to note that this characterization of semantic integration is independent of
the scope of the ontologies. Any given task may require the use of only a portion of the
ontologies shared by two enterprise applications. If that relevant portion of the ontologies
supports only the intended models, then semantic integration or reusability is not impaired.
For example, two applications may have different ontologies for purchasing products, but if
the applications are only communicating activities and temporal constraints for scheduling
their activities, then any disagreements about purchasing concepts are not relevant. In such a
case the applications can still be semantically integrated or reused with respect to the
scheduling task even though they have only partially overlapping sets of concepts in their
ontologies.

A. Inference.

Enterprise analysis requires inference on enterprise models, including deduction, consistency
checking, and abduction (hypothetical reasoning). If the semantics of the ontology is
informal, then this inference must be done by an engineer or consultant and cannot be
automated. However, if this inference is to be automated, then the ontology must have
formal semantics. Even if the analysis is not automated, it cannot be guaranteed that two
engineers will agree on the verification or validation of an enterprise model, unless the
ontology has a formal semantics.

A. Implementing Enterprise Models.

The dream of model-driven enterprise operations rests on the implementation of an
enterprise ontology within the enterprise’s information systems. The challenge of evaluating
such an implementation leads to the verification of ontology implementation, which
determines whether the enterprise application is correct with respect to the ontology.
Without a formal semantics for the ontology, the verification of an implemented enterprise
model is difficult to evaluate. However, with a formally axiomatized ontology, one can use
the Ontological Stance () as the basis for such verification. If an enterprise application is
described as an inference system, then any sentence that is satisfiable by the ontology must
be decided to be satisfiable by the application.

A. What is an Enterprise?

Handbook of Enterprise Architecture

9 2

The discussion to this point has focused on the verification of an ontology, but if one
carries the analogy to software engineering, then one must also address the validation of the
ontology. In particular, does an enterprise modelling ontology have sufficient expressiveness
to axiomatize the necessary enterprise modelling constructs? What range of concepts is
required for enterprise modelling?

To identify the scope of ontologies required for enterprise modelling, the first need is for a
characterization of an enterprise. If an enterprise is defined as a set of sentences whose
lexicon consists of terminology whose semantics are specified by the ontologies, then the
following classes of sentences would intuitively need to be definable in any validated
enterprise ontology:

• Definitions of activities performed within the enterprise;
• Resource constraints for the enterprise;
• Organizational constraints for the enterprise, including constraints among organizational

roles, positions, and agents within the enterprise, such as commitments, obligations,
and responsibilities;

• Enterprise goals and policies (e.g. “all deliveries must be made within 24 hours of placing
the order” and “when an order is made, a copy is sent to the regional office”);

• Product constraints for the enterprise, including product design requirements, quality
constraints, and product standards;

• Service constraints for the enterprise;
• External constraints on the enterprise defining the external environment of the

enterprise, dealing with customers, markets, suppliers, and competitors. External
constraints also include the definitions of the activities performed by agents external
to the enterprise (e.g. suppliers, subcontractors), but whose effects are required by the
activities within the enterprise.

In addition to these classes of sentences, there are several basic relationships that need to be
captured:

• Customers have goals and requirements that they assign to the enterprise to achieve;
• There are two primary classes of goals, related to products and services;
• Enterprise goals are generated from the commitment to achieve customer goals and

satisfy customer requirements;
• There must be ways of assigning goals of the entire enterprise to agents within the

enterprise;
• If the enterprise cannot achieve a particular goal, external agents (such as suppliers or

partners) would have to be assigned to achieve that goal;
• The enterprise must be able to perform those activities whose effects achieve the

enterprise’s goals;
• Resources are required by enterprise activities.

Of course, a truly comprehensive characterization would be provided by an enterprise
ontology itself, but this intuitive characterization will later be used to evaluate existing
enterprise ontologies.

1. Languages for Enterprise Modelling

There are many languages for expressing ontologies – and their semantic properties vary in
important ways. They may be based on different underlying paradigms, they support different
levels of expressiveness and also their formal properties may differ. Among the variety of

Handbook of Enterprise Architecture

10 2

languages being used today to specify ontologies, the four described in this section are the
most widely used.

0.1. UML.

The primary application of UML [Fowler & Scott 1999] for ontology design is in the
specification of class diagrams for object-oriented software. However, UML does not have a
clearly specified declarative semantics, so that it is not possible to determine whether an
ontology is consistent, or to determine the correctness of an implementation of the
ontology. Semantic integration in such cases becomes a subjective exercise, validated only by
the opinions of the human designers involved in the integration effort. More recently, UML
has been supplemented with the Object Constraint Language (OCL) [Warmer & Kleppe
1999] that is closer to offering a semantics similar to a restriction of first-order logic, and
there is some research [Cranefield & Purvis 1999] on the suitability of OCL for more
rigorous ontology specification.

An additional drawback of UML as an ontology specification language is that it contains
several implicit ontological commitments, particularly in respect to activity concepts. This
makes it difficult to use UML to integrate different process-related enterprise applications
(which may require the use of activity terminology whose semantics may not be equivalent to
the intended semantics of the corresponding UML concepts).

On the other hand, UML is closer than more logic-oriented approaches to the
programming languages in which enterprise applications are implemented. If there is
agreement on the informal semantics of the UML-based ontology, then the verification of
the implementation with respect to the ontology may be easier.

0.1. EXPRESS.

EXPRESS ([Schenk & Wilson 1994]) was initially designed to support information
modeling, particularly the information required to design, build, and maintain products.
Although EXPRESS generalizes earlier approaches such as IDEF1X [Menzel 1997], the major
drawback for specifying ontologies for semantic integration is that EXPRESS does not have a
clear declarative semantics. This makes it difficult to verify ontologies that use EXPRESS,
and also makes it difficult to determine the consistency of semantic mappings between
ontologies. There are also no automated inference tools capable of reasoning with EXPRESS
beyond checking for data integrity constraints.

The EXPRESS language has been accepted as an international standard [ISO 10303] and is
widely used by other ISO standards, particularly the STEP standard for product data exchange.

0.1. DAML+OIL.

The Darpa Agent Markup Language (DAML) [Hendler & McGuinness 2001] is based on
description logic [McGuinness & Patel-Schneider 1998; Broekstra et al. 2000], which is a
specialized language that originated in the KL-ONE system of [Brachman & Schmolze 1981].
Description logic is a variation of first-order logic that arises from restrictions to support
reasoning within class hierarchies; they also restrict first-order logic by omitting constructs
that lead to undecidability of inference within the language. The Ontology Inference Layer

Handbook of Enterprise Architecture

11 2

(OIL) [Fensel et al. 2000] is a language that extends previous frame-based languages (such as
OKBC [Chaudri et al. 1998a]) with a richer set of modeling primitives. These two efforts
have been merged to create DAML+OIL [DAML 2001]

What distinguishes DAML+OIL from the other ontology specification languages is that it
has been primarily designed for the Semantic Web [Broekstra et al. 2000], and is intended to
be compatible with emerging web standards such as RDFS [Brickley & Guha 2000] in order to
make it easier to use ontologies consistently across the web. It is currently being proposed as
a standard within W3C.

Ontologies to support the semantic web are being developed using the Darpa Agent Markup
Language (DAML). A library of approximately 160 ontologies are available
www.daml.org/ontologies/. The most important of these ontologies is DAML-S [McIlraith et
al. 2001], which is an upper ontology for services that includes concepts for profiles,
processes, and time. In this context, ‘services’ refer to Web sites that do not merely provide
static information but allow one to effect some action or change in the world, such as the sale
of a product or the control of a physical device. Thus the DAML-S ontology must support
automatic web service discovery, invocation, composition, and interoperation.

0.1. KIF.

The Knowledge Interchange Format (KIF) ([Genesereth & Fikes 1992], [Hayes & Menzel
2001]) and Conceptual Graphs (CG) [Sowa 2000] are languages designed to support the
interchange of knowledge among heterogeneous computer systems5. KIF includes a core
language that has the expressiveness of first-order logic; its syntax and semantics are those of
traditional first-order logic. Most recently, this has been extended to include extensions that
allow certain formulae of infinite length (known as infinitary logic), sorted formulae for the
specification of class hierarchies, and the specification of the meta-theory6 of KIF within the
language itself. Several inference tools are available for reasoning with KIF/CG (such as the
SNARK theorem prover [Stickel et al. 1994], although these have had limited use outside of
the academic community.

1. Ontologies for Enterprise Modelling.

Enterprise modelling ontologies are distinguished by their scope and the central role of
integrating multiple ontologies. The ontologies must be able to represent concepts in the
domains of activities, time, resources, products, services, organization, goals, and policies.
Furthermore, these must be integrated in order to support reasoning that requires the use of
5 Although defined separately, both KIF and CG have equivalent expressiveness, and are being standardized

together within the International Standards Organization

6 A note to the reader: what is usually referreed to in the Enterprise modelling literature as a ‘model’ is called in
mathematrical logic a ‘theory’. Similarly the concept of a meta-model in Enterprise Modelling (and in most
engineering disciplines) is mathematically speaking a meta-theory. Considering an enterprise model as a
theory allows people and machines to make no inferences from the enterprise model that were not intended
(and to be able to make all intended inferences).

Handbook of Enterprise Architecture

12 2

multiple ontologies and to support interoperability among tools using different ontologies.
For example, the notion of manufacturability requires reasoning about the product
properties, preconditions and effects of activities and the capabilities of resources.

0.1. Edinburgh Enterprise Ontology.

The Enterprise Project at the University of Edinburgh [Uschold et al. 1997] supported an
environment for integrating methods and tools for capturing and analyzing key aspects of an
enterprise, based on an ontology for enterprise modeling.

The Edinburgh Enterprise Ontology (EEO) has five top-level classes for integrating the
various aspects of an enterprise (Activities and Processes, Time, Organization, Strategy and
Marketing) for integrating the various aspects of an enterprise.

Activity Activity Specification, Execute, Executed Activity
Specification, T-Begin, T-End, Pre-Conditions, Effect,
Doer, Sub-Activity, Authority, Activity Owner, Event,
Plan, Sub-Plan, Planning, Process Specification,
Capability, Skill, Resource, Resource Allocati

 on, Resource Substitute.

Organization Person, Machine, Corporation, Partnership, Partner,
Legal OrganisationEntity, Organisational Unit, Manage,
Delegate, Management Link, Legal Ownership, Non-Legal
Ownership, Ownership, Owner, Asset, Stakeholder,
Employment Contract, Share, Share Holder.

Strategy Purpose, Hold Purpose, Intended Purpose, Strategic
Purpose, Objective, vision, Mission, Goal, Help
Achieve, Strategy, Strategic Planning, Strategic
Action, Decision, Assumption, Critical Assumption,
Non-Critical Assumption, Influence Factor, Critical
Infl

 uence Factor, Non-Critical Influence Factor, Critical
Success Factor, Risk.

Marketing Sale, Potential Sale, For Sale, Sale Offer, Vendor,
Actual Customer, Potential Customer, Customer,
Reseller, Product, Asking Price, Sale Price, Market,
Segmentation Variable, Market Segment, Market
Research, Brand Image, Feature, Need, Market Need,
Promot

 ion, Competitor.

Time Time Line, Time Interval, Time Point

Handbook of Enterprise Architecture

13 2

Figure : Concepts in the Edinburgh Enterprise Ontology

The Activities and Processes concepts define the activities and resources in the enterprise.
The Organization concepts cover the organizational constraints for the enterprise. Goals,
policies, and their relationship to the activities performed by the enterprise and its agents are
covered by the Strategy concepts. The Marketing concepts cover the constraints that
characterize the external environment of the enterprise including the relevant relationships
between an enterprise, its customers, suppliers and partners. On the other hand, the
Enterprise Ontology lacks a characterization of products and services.

The EEO is semi-formal -- it provides a glossary of terms expressed in a restricted and
structured form of natural language supplemented with a few formal axioms using KIF and
Ontolingua [Chaudri et al 1998b]. As such, EEO is not a verified ontology.

Lloyd's Register has used the EEO for more effective modeling and re-engineering of
business processes for strategic planning. IBM UK intends to exploit the Enterprise Ontology
in modeling its own internal organization as well as providing technical input via its BSDM
(Business Systems Development Method) business modeling method. The Enterprise
Ontology is an ongoing source of inspiration for projects, both academic and commercial
that require models of concepts in this domain. To the author's knowledge, the EEO is never
imported or translated into a target language in full. Rather, it is perused and picked over for
ideas and concepts that may be useful in the new context.

0.1. TOVE

The TOVE (TOronto Virtual Enterprise) project ([Gruninger 1998 and Fox], [Gruninger
1997]) has created an integrated suite of ontologies to support enterprise engineering. Since
this suite aims to be a shared terminology for the enterprise that every application can
jointly understand and use, the ontologies span knowledge of activity, time, and causality
([Fox et al. 1995], [Fadel et al. 1994], [Kim & Fox 1994], [Tham et al. 1994]).

The TOVE ontologies were developed in cooperation with several companies and have
been applied to the design and analysis of enterprise models within supply chain management
(SCM), project management, and business process engineering. In particular [Atefi 2000]
discusses the application of the TOVE ontologies to the analysis of customer relationship
management processes within IBM Canada. In other work, the ontologies were used to model
the supply chain of BHP Steel (Australia) and assist in the construction of management
scenarios.

 shows the suite of TOVE ontologies. The suite is divided into three groups: Core,
Derivative, and Enterprise ontologies.

The Core ontologies capture the generic characteristics of enterprises.

The Derivative ontologies are specializations of various classes within some Core
ontologies. For example, the concept of “goal” is defined in the (core) Organization
Ontology, while different classes of goals (such as purchase orders and deadlines) are defined
in the (derivative) Goals Ontology. An ontology may also be derivative of multiple core
ontologies. For example, the Scheduling Ontology axiomatizes different classes of plan and

Handbook of Enterprise Architecture

14 2

schedule activities, as well as resource and temporal constraints; it is therefore derivative of
both the Activity/Time and Resource Ontologies.

There are some problems with the integration of these various ontologies within TOVE,
particularly in regards to the Product Ontology. The primary motivation for the TOVE
Product Ontology was to support collaborative design. It must therefore be able to represent
an evolving and incomplete design for a product, as well as represent the requirements that
the product must satisfy. It must also capture the design rationale for various features and
parameters of the product. However, TOVE lacks an adequate integration of the Product
Ontology with the other ontologies through the following problem: Given a design for a
product, how can it be manufactured ? That is, what activities are required to manufacture a
product with the properties specified in the design and what resources and organisational
constraints are required to support these activities?

The Enterprise ontologies are used to define classes of enterprises. The Enterprise Design
Ontology defines the template used to model any enterprise; as such, there is a close
relationship to the informal definition of an enterprise. The various Enterprise ontologies
define classes of processes, resources, products, services, and organization constraints used to
define a particular class of enterprises. For example, the Material Flow ontology axiomatizes
the sets of processes and constraints that define supply chain enterprises, the Project
ontology captures the constraints of one-of-a-kind manufacturers such as construction and
ship-building, and the Business Process ontology addresses service-based enterprises. This
approach is intended to support reusability and benchmarking, by identifying those
constraints that are shared among different enterprises.

The TOVE ontologies are axiomatized using KIF and implemented using Prolog.
Implementations of TOVE ontologies are used to analyze enterprise models in what are
referred to as advisors, which are encapsulations of the theories required to reason about
alternative enterprise designs [Gruninger and Fox 1994]. Advisors have included activity-
based costing, quality, time-based competition, and process integration.

Handbook of Enterprise Architecture

15 2

Product
Ontology

Organization
Ontology

Activity
Ontology

Time
Resource
Ontology

Service
Ontology

Project
Ontology

Material
Ontology

Business
Ontology
Process

Inventory
Ontology

Transportation
Ontology

Quality
Ontology

Electro

Product
Ontology

mechanical

Product
Requirements
Ontology

Resource
Ontology

Information

Ontology

Goals
Ontology Ontology

Scheduling
Ontology
Control

Enterprise

Ontology
Design

Core

Derivative
Ontologies

Enterprise
Ontologies

Ontologies

Product
Design

Ontology

Intended
Action

Figure : TOVE Ontologies

0.1. ENV 12204.

ENV12204 [ENV 12204], [Kosanke and Nell 1997]) describes a set of twelve modelling
constructs that define the basic language for modelling enterprise operations (). In
comparison to the intuitive definition of an enterprise, ENV 12204 provides adequate
coverage for enterprise modelling concepts. The primary drawback of ENV 12204 is that it
has only an implicit semantics expressed in natural language, and does not have an
underlying ontology specification language.

Handbook of Enterprise Architecture

16 2

Figure : ENV12204 enterprise modelling constructs.

1. Ontologies for SETS OF Enterprise Modelling Concepts.

Enterprise modelling ontologies explicitly construct an integrated set of smaller modules in
order to capture the entire range of enterprise concepts. There are also several efforts
underway within academia, industry, and government that are focused on designing ontologies
for more restricted sets of enterprise concepts, such as processes, resource, and products.

0.0.1. PSL.

The Process Specification Language (PSL) ([Menzel & Gruninger 2001], [Schlenof et al.
1999], [Cutting-Decelle et al. 2000]) has been designed to facilitate correct and complete
exchange of process information among manufacturing and business software systems.
Included in these applications are scheduling, process modeling, process planning, production
planning, simulation, project management, workflow, and business process reengineering.

The PSL Ontology is organized into PSL-Core and a partially ordered set of extensions.
All axioms are first-order sentences, and are written in KIF . There are two types of
extensions within PSL -- core theories and definitional extensions. Core theories introduce
and axiomatise new relations and functions that are primitive, whereas all terminology
introduced in a definitional extension have conservative definitions using the terminology of
the core theories. Thus, definitional extensions add no new expressive power to PSL-Core.

Handbook of Enterprise Architecture

17 2

The purpose of PSL-Core is to axiomatize a set of intuitive semantic primitives that is
adequate for describing the fundamental concepts of manufacturing processes7. Consequently,
this characterization of basic processes makes few assumptions about their nature beyond
what is needed for describing those processes, and the Core is therefore rather weak in terms
of logical expressiveness. In particular, PSL-Core is not strong enough to provide definitions
of the many auxiliary notions that become necessary to describe all intuitions about
manufacturing processes.

To supplement the concepts of PSL-Core, the ontology includes a set of extensions that
introduce new terminology. Any PSL extension provides the logical expressiveness to
axiomatize intuitions involving concepts that are not explicitly specified in PSL-Core. All
extensions within PSL are consistent extensions of PSL-Core, and may be consistent
extensions of other PSL extensions. However, not all extensions within PSL need be
mutually consistent. Also, the core theories need not be conservative extensions of other
core theories.

The definitional extensions are grouped into parts according to the core theories that are
required for their definitions. gives an overview of these groups together with example
concepts that are defined in the extensions. The definitional extensions in a group contain
definitions that are conservative with respect to the specified core theories; for example, all
concepts in the Temporal and State Extensions have conservative definitions with respect to
both the Complex Activities and Discrete States theories.

Definitional Extensions Core Theories Example Concepts

Activity Extensions Complex Activities deterministic / nondeterministic
activities concurrent activities
partially ordered activities

Temporal and State Extensions Complex Activities, Discrete States preconditions effects conditional
activities triggered activities

Activity Ordering and Duration
Extensions

Subactivity Occurrence Ordering,
Iterated Occurrence Ordering, Duration

complex sequences and branching
iterated activities duration-based
constraints

Resource Role Extensions Resource Requirements reusable, consumable, renewable,
deteriorating resources

7 The axioms of PSL-Core were directly incorporated from earlier work with the Process Interchange Format (PIF)
([Lee et al. 1996]).

Handbook of Enterprise Architecture

18 2

Figure : Definitional extensions of PSL.

PSL is a project within Joint Working Group 8 of Sub-committee 4 (Industrial data) and
Sub-committee 5 (Manufacturing integration) of Technical committee ISO TC 184,
(Industrial automation systems and integration). Part 1 of the standard has been accepted as
a Committee Draft [ISO18629-1]. All theories within the PSL Ontology that are currently
being standardized have been verified with respect to the intended semantics of their
terminology.

0.0.1. STEP and MANDATE.

STEP [ISO 10303] has been standardized within the International Standards Organization
to support interoperability among manufacturing product software applications (such as CAD
systems and process planning software) throughout the entire product life-cycle. STEP
provides standard data definitions for geometry (wire frame, surfaces and solid models),
product identification, product structure, configuration and change management, materials,
finite element analysis data, drafting, visual presentation, tolerances, kinematics, electrical
properties and process plans. STEP is currently being implemented in the aerospace,
automotive, shipbuilding, building design and electronics industries.

MANDATE [ISO 15531] is also being standardized within Joint Working Group 8 of Sub-
committee 4 (Industrial data) and Sub-committee 5 (Manufacturing integration) of
Technical committee ISO TC 184, (Industrial automation systems and integration).
MANDATE is primarily concerned with manufacturing resource data, including an informal
ontology of time.

Both STEP and MANDATE are specified in EXPRESS; consequently, they cannot be
verified with respect to their intended semantics.

1. Challenge Problems for Enterprise Modelling.

This chapter concludes with five challenge problems to motivate future research within
enterprise modelling.

0.1. Ontologies for Enterprise Modelling.

Two ontologies for enterprise modelling have been constructed in the past decade – TOVE
and the Edinburgh Enterprise Ontology. Although there is considerable overlap in the set of
concepts in each of these ontologies, no effort has been made to merge or align them. Such
an alignment could at least form the basis for a formalization of the concepts informally
described in ENV 12204. More ambitiously, an alignment of these two enterprise modelling
ontologies could be used as the basis for standardization of a wide range of enterprise
concepts.

An initial step in this direction is the Unified Enterprise Modelling Language (UEML), a
new project whose goal is to provide a common language suited for enterprise modeling

Handbook of Enterprise Architecture

19 2

[Kosanke &Nell 1997]. It is intended to provide business users with a standard interface to
software for enterprise modeling, analysis, and simulation. It also aims to provide a neutral
language for enterprise model exchange.

0.1. Implementing Ontologies .

There is very little work being done on the implementation of ontologies within enterprise
applications. In fact, many of the ontologies for enterprise integration are designed post-hoc
by extracting the ontology implicit within existing enterprise applications. However, as
ontologies are extended to new domains (particularly for organizational constraints and
electronic commerce), new applications will be implemented directly from the ontologies.
Thus, a methodology for the evaluation of such implementations is needed.

0.1. Ontology Reuse.

Although ontologies came to prominence within artificial intelligence through the DARPA
program for Sharable and Reusable Knowledge Bases ([Neches et al. 1991], [Gruber 1995]),
there is still limited reuse and sharing of ontologies. It is difficult to determine why this is the
case ([Uschold et al. 1998], [Pinto 1999], [Goldstein & Esterline 1995]). The Ontolingua
ontology library at the Stanford University Knowledge Systems Laboratory contains almost
100 ontologies (http://www.ksl.stanford.edu/software/ontolingua), but there are limited links
among most of them. Within the context of semantic integration, this becomes the problem
of how enterprise applications determine that they have overlapping sets of concepts and
how could they possibly share the semantics of their terminology.

The challenge here is to build an ontology for enterprise modelling that integrates existing
ontologies for process, product, resource, and organization. Such ontologies often have
overlapping concepts, and these may cause problems with reuse. For example, the Standard
for the Exchange of Product data (STEP) [ISO10303] was designed for product modeling and
the Process Specification Language (PSL) [Schlenoff et al. 1999] was designed for process
modeling. However, both ontologies contain the concept process-plan, which is the sequence
of activities that must be performed to manufacture a product according to its design
specifications. Unfortunately, this concept is defined very differently in the two ontologies,
preventing easy reuse between them.

Enterprise (life-cycle) architecture frameworks, such as GERAM (Chapter 3) may be used
to organise ontological theories and define the scope of ontology development for enterprise
modelling purposes. The ‘generic enterprise models’ column of GERAM may be populated
with ontological theories. At the moment this column is populated by so-called meta-
models. Mathematically speaking this kind of meta-model is a weak ontological theory
represented in the form of a meta-schema, defining the concepts and relations between them,
but without expressing inference rules or semantic integrity constraints (with the exception
of very simple constraints). Thus a meta-schema can be used to design a database to store
enterprise models, but can not be used to perform deductions on these models One way to
develop an enterprise ontology is to define a meta-schema and then add inference rules and
semantic integrity constraints to the concepts defined in such a meta-schema.

Handbook of Enterprise Architecture

20 2

0.1. Ontology Extension.

How could generic ontologies be extended to more domain-specific ones? This problem
appears in the distinction between Core and Derivative ontologies in TOVE, but there is no
coherent methodology for ontology extension. Many ontologies originate as domain
ontologies, within different applications' and scientific disciplines' ontologies ([Ashburner
2000], [Cohn 2001], [Dalianis & Persson 1997], [Smith & Becker 1997]). It may be argued
that there are few domain concepts in common between physics and logistics and hence little
reuse may exist between ontologies for these domains. However, such domain ontologies
often use very similar generic concepts (for example, both ontologies may contain an
ontology of time). The challenge of reuse and sharing is then equivalent to the task of
identifying the generic concepts that are implicit within a domain ontology. In fact, the goal
of the Standard Upper Ontology project [Pease 2001] is to a define generic ontology that
more domain-specific ontologies can reuse in this way.

0.1. Enterprise in a Test Tube.

There are many issues within enterprise integration that can only be resolved through
empirical approaches. There is a need to establish an academic and industrial testbed (which
will be refer to as an 'Enterprise In a Test Tube' (ETT)) that consists of multiple enterprise
applications and ontologies. Using this environment, participants would carry out
experiments to test, compare, and validate various theories about enterprise design and
reengineering.

One problem is that enterprise design knowledge is currently descriptive and ad-hoc. It is a
collection of heuristics that are not applicable in all circumstances. Therefore, it is desirable
to define a theory of enterprise design by discovering its underlying principles. It has to be
understood why different approaches and techniques work for certain enterprises and why
they fail for other enterprises. There is a need for a distillation of the principles for
enterprise design implicit within the heuristics, and the formalisation of these principles as
logical theories. Once this is accomplished, various enterprise design theories could be tested,
compared and validated.

The use of integrated ontologies allows the flexible configuration of enterprise models and

operating scenarios for problems. For example, operating strategies within an enteprise (such
as quality problem response, production strategies and inventory management policies) would
be explicitly represented in the enterprise model, supporting a 'plug-and-play' approach to
the incorporation and change of constraints in a problem specification. Hypotheses for
enterprise design heuristics are expressed as queries that can be deduced from the axioms of
the ontologies and theories.

The ETT should also support new ways of building enterprise models, particularly in the
acquisition and validation of an enterprise model. It should support the capability of

Handbook of Enterprise Architecture

21 2

reconciling different enterprise designs that may arise during the acquisition process. Model
acquisition must therefore be able to handle incomplete and inconsistent information, as well
as being able to modify or augment a model when things don't work. It should use partial
enterprise models, combine these partial models into an integrated model of the entire
enterprise, and support the iterative refinement / elaboration and definition of the enterprise
model, 'filling in' pieces of incomplete models.

To be effective, the ETT must also support reusability by providing a repository for
various enterprise models, including previous problems and their solutions8. ETT must
provide the capability of dynamically constructing and modifying models, so that new models
can be created from existing models by reconfiguring them to adapt to a given problem.

1. References

[Ashburner 2000] Ashburner, M. Gene ontology: Tool for the unification of biology. Nature Genetics
25:25-29.

[Atefi 97] Atefi, K., "Formalization of Business Process Re-engineering Heuristics", M.A.Sc. Thesis,
Mechanical and Industrial Engineering Dept., University of Toronto, 1997.

[Barwise et al. 2000] Barwise, J., Etchemendy, J., Allwein, G., Barker-Plummer, D. Language, Proof,
and Logic. Seven Bridges Press.

[Brickley & Guha 2000] Brickley, D. and Guha, V.R. Resource Description Framework Schema
Specification 1.0. W3C Candidate Recommendation. (http://www.w3.org/TR/rdf-schema)

[Broekstra et al. 2000] Broekstra, J., Klein, M., Fensel, D., and Horrocks, I. Adding formal semantics to
the Web: Building on top of RDF Schema. Proceedings of the ECDL 2000 Workshop on the
Semantic Web.

[Chaudri et al 1998a] Chaudri, V.K., Farquhar, A.,Fikes, R., Karp, P.D., and Rice, J.P. OKBC: A
programmatic foundation for knowledge base interoperability, Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, Wisoconsin.

[Chaudri et al 1998b] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, & J. P. Rice. Open Knowledge
Base Connectivity 2.0. Knowledge Systems Laboratory, 1998.[Ciociou et. al. 2001] Ciocoiu, M.,
Gruninger M., and Nau, D. Ontologies for integrating engineering applications, Journal of Computing
and Information Science in Engineering, 1:45-60.

[Cohn 2001] Cohn, A. Formalizing biospatial knowledge, Formal Ontology in Information Systems 2001,
Ogunquit, Maine.

[Cover 1998] Cover, R. XML and Semantic Transparency, The XML Cover Pages http://www.oasis-
open.org/cover/xmlAndSemantics.html

[Cranefield & Purvis 1999] Cranefield, S. and Purvis, M. UML as an ontology modeling language. In
Proceedings of the Workshop on Intelligent Information Integration, Sixteenth International Joint
Conference on Artificial Intelligence.

[Cutting-Decelle et al. 2000] Cutting-Decelle, A.F., Anumba, C.J., Baldwin, A.N., Gruninger, M.
Towards a unified specification of construction process information: The PSL approach, in Product
and Process Modelling in Building and Construction, Steiger-Garcao and Scherer (eds), 199-207.

[Dalianis & Persson 1997] Daliannis, H. and Persson, F. Reuse of an ontology in an electrical distribution
network domain, Ontological Engineering, AAAI-97 Spring Symposium Series, Stanford.

[Dennett 1989] Dennett, D. The Intentional Stance. MIT Press.
[ENV 12204] ENV 12204 Advanced Manufacturing Technology – Systems Architecture – Framework for
8 e.g. in the form of enterprise modelling patterns.

Handbook of Enterprise Architecture

22 2

Enterprise Modelling. CEN TC 310/WG1, 1995.
[Fadel et al. 94] Fadel, F., Fox, M.S., and Gruninger, M. A resource ontology for enterprise modelling.

Third Workshop on Enabling Technologies-Infrastructures for Collaborative Enterprises, (West
Virginia University 1994), pp. 117-128.

[Fensel et al. 2001] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider, P.
F. (2001). OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38--
44. http://citeseer.nj.nec.com/fensel01oil.html

[Fowler & Scott 1999] Fowler, M. and Scott, K. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley.

[Fox et al. 1995] Fox, M.S., Barbuceanu, M., Gruninger, M., An Organisation Ontology for Enterprise
Modelling: Preliminary Concepts for Linking Structure and Behaviour, Computers in Industry, Vol.
29, pp. 123-134.

[Genesereth & Fikes 1992] Genesereth, M.R. and Fikes, R. Knowledge Interchange Format 3.0.Technical
Report KSL-92-01, Knowledge Systems Laboratory, Stanford University.

[Goldstein & Esterline 95] Goldstein, D., and Esterline, A., "Methods for Building Sharable Ontologies",
Proceedings of the IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing, Menlo Park
CA, USA: AAAI Press, 1995.

[Gruber 1993] Gruber, T.R. A translation approach to portable ontology specifications. Knowledge
Acquisition 5:199-220.

[Gruninger and Menzel 2002] Gruninger, M. and Menzel, C. Process Specification Language: Principles
and Applications, to appear in AI Magazine, 2002.

[Gruninger and Uschold 2002] Gruninger, M. and Uschold, M. Ontologies and semantic integration, to
appear in Software Agents for the Warfighter. Information Technology Assessment Consortium.

[Gruninger and Fox 1998] Gruninger, M., and Fox, M.S., Enterprise Modelling, AI Magazine, 19:109-121
(Fall 1998), AAAI Press.

[Gruninger 1996] Gruninger, M., Designing Generic Ontologies, Workshop on Ontological Engineering,
European Conference on Artificial Intelligence 1996, Budapest.

[Gruninger 1997] Gruninger, M., Ontologies for Enterprise Engineering, Enterprise Engineering and
Integration: Building International Consensus, Springer-Verlag.

[Gruninger & Fox 94] Gruninger, M., and Fox, M.S., "The Role of Competency Questions in Enterprise
Engineering", Benchmarking - Theory and Practice. Chapman Press.

[Guarino et al. 94] Guarino, N., Carrara, M., and Giaretta, P. 1994. An Ontology of Meta-Level
Categories. In E. Sandewall and P. Torasso (eds.), Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourth International Conference (KR94). Morgan Kaufmann,
San Mateo, CA: 270-280.

[Guarino & Welty 2000] Guarino, N. and Welty, C. Identity, unity, and individuality: Towards a formal
toolkit for ontological analysis. Proceedings of the Fourteenth European Conference on Artificial
Intelligence, Berlin.

[Hayes & Menzel 2001] Hayes, P. and Menzel, C. A semantics for the Knowledge Interchange Format,
Workshop on the IEEE Standard Upper Ontology, IJCAI 2001, Seattle.

[Hendler & McGuinness 2001] Hendler, J. and McGuinness, D. The DARPA Agent Markup Language.
IEEE Intelligent Systems, January 2001.
[ISO 10303] Industrial Systems and Automation – Product Data, 1994.
[ISO 15531] Industrial Systems and Automation – Industrial Manufacturing Management Data, 1999.
[ISO/TC184/SC5/WG1] Annex A: GERAM. In ISO/DIS 15704: Industrial automation systems -

Requirements for enterprise-reference architectures and methodologies, 1999

[ISO 18629] Industrial Systems and Automation – Process Specification Language, 2000.

Handbook of Enterprise Architecture

23 2

[Kim & Fox 95] Kim, H. and Fox, M.S. An Ontology of Quality for Enterprise Modelling, Fourth
Workshop on Enabling Technologies-Infrastructures for Collaborative Enterprises, (West Virginia
University 1995).

[Kosanke & Nell 1997] Kosanke, K. and Nell, J. (eds.) Enterprise Engineering and Integration: Building
International Consensus. Springer-Verlag.

[Lee et al. 1998] Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A., Yost, G. (1998) The PIF Process
Interchange Format and Framework, Knowledge Engineering Review, 2:1-30.

[McGuinness & and Patel-Schneider 1998] McGuinness, D.L. and Patel-Schneider, P.F. Usability issues
in description logic systems, Proceedings of the Fifteenth National Conference on Artificial
Intelligence, Madison, Wisconsin.

[McIlraithet al. 2001] McIlraith, S., Son, T.C., and Zeng, H. Semantic web service, IEEE Intelligent
Systems 16:46-53.

[Menzel 1997] Menzel, M. Modeling method ontologies: A formal foundation for enterprise model
integration, Workshop on Ontological Engineering, AAAI-97 Spring Symposium, Stanford.

[Menzel & Gruninger 2001] Menzel, C. and Gruninger M. A formal foundation for process modeling,
Formal Ontology in Information Systems 2001, Ogunquit Maine.

[Neches et al. 1991] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W.
Enabling technology for knowledge sharing, AI Magazine, Vol. 12, No. 3, 36-56.

[Pease 2001] Pease, A. (ed) Proceedings of the IEEE Standard Upper Ontology Workshop, IJCAI-2001,
Seattle.

 [Pinto 1999] Pinto, H.S. Towards ontology reuse, Workshop on Ontology Management, AAAI-99,
Orlando.

[Schenk & Wilson 1994] Schenk, D.A. and Wilson, P.R. Information Modeling the EXPRESS Way.
Oxford University Press, 1994.

[Schlenoff et al. 1999] Schlenoff, C., Gruninger, M., Ciocoiu, M. The Essence of the Process
Specification Language, Transactions of the Society for Computer Simulation vol.16 no.4 (December
1999) pages 204-216.

[Smith et al. 1998] I. Smith, P. Cohen, J. Bradshaw, M. Greaves and H. Holmback. “Designing
Conversation Policies using Joint Intention Theory”. Proceedings of the Third International
Conference on Multi Agent Systems (ICMAS-98), 3 - 7 July, 1998, Paris, France, IEEE Press, pp.
269-276.

[Smith & Becker 1997] Smith, S. and Becker, M. An ontology for constructing scheduling systems,
Ontological Engineering, AAAI-97 Spring Symposium Series, Stanford.

[Sowa 2000] Sowa, J.F., Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Cole.

[Stickel et al. 1994] Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., and Underwood, I.
Deductive composition of astronomical software from subroutine libraries, Proceedings of the Twelfth
International Conference on Automated Deduction, Nancy, France, 341-355.

[Tham et al. 94] Tham, D., Fox, M.S., and Gruninger, M., "A Cost Ontology for Enterprise Modelling",
Third Workshop on Enabling Technologies-Infrastructures for Collaborative Enterprises, (West
Virginia University 1994).

[Uschold & Gruninger 1996] Uschold, M. and Gruninger, M. Ontologies: Principles, Methods, and
Applications, Knowledge Engineering Review, 1:96-137.

[Uschold et al. 97] Uschold, M., King, M., Moralee, S., Zorgios, Y., "The Enterprise Ontology",
Knowledge Engineering Review,

[Uschold et al. 1998] Mike Uschold, Mike Healy, Keith Williamson, Peter Clark, Steven Woods.
Ontology Reuse and Application. In Proceedings of the International Conference on Formal Ontology
and Information Systems - FOIS'98 (Frontiers in AI and Applications v46), pages 179-192, Ed: N.

Handbook of Enterprise Architecture

24 2

Guarino, Amsterdam:IOS Press, 1998.
[Warmer & Kleppe 1999] Warmer, J. and Kleppe, A. The Object Constraint Language: Precise Modeling

with UML. Addison-Wesley.

Handbook of Enterprise Architecture

25 2

