
SEMANTIC INTEGRATION THROUGH INVARIANTS

MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

1. INTRODUCTION

Many tasks require correct and meaningful communication and integration among intel-
ligent agents and information resources. A major barrier to such interoperability is seman-
tic heterogeneity: different applications, databases, and agents may ascribe disparate mean-
ings to the same terms or use distinct terms to convey the same meaning. The development
of ontologies has been proposed as a key technology to support semantic integration—two
software systems can be semantically integrated through a shared understanding of the
terminology in their respective ontologies.

A semantics-preserving exchange of information between two software applications re-
quires mappings between logically equivalent concepts in the ontology of each application.
The challenge of semantic integration is therefore equivalent to the problem of generating
such mappings, determining that they are correct, and providing a vehicle for executing the
mappings, thus translating terms from one ontology into another.

Current approaches to semantic integration do not fully exploit the model-theoretic
structures underlying ontologies. These approaches are typically based on the taxonomic
structure of the terminology ([12], [13]) or heuristics-based comparisons of the symbols of
the terminology ([1, 9]). Such techniques are well-suited to working with many ontologies
currently under development, most of which define a terminology with minimal formal
grounding and a set of possible models that does not contain a rich set of features and
properties.

However, automated and correct approaches to semantic integration will require on-
tologies with a deeper formal grounding so that decisions may be made by autonomous
software when comparing ontologies for integration. This article presents an approach
toward this goal using techniques based on the development of strong ontologies with ter-
minologies grounded in properties of the underlying possible models. With these as inputs,
semi-automated and automated components may be used to create mappings between on-
tologies and perform translations.

The Process Specification Language (PSL) ([6], [7]) is used in this article to demon-
strate this approach to ontology construction and integration. PSL consists of a core ontol-
ogy which outlines basic objects that exist in the domain, and a multitude of definitional
extensions that provide a rich terminology for describing process knowledge. These ex-
tensions are based on invariants, properties preserved by isomorphism, which partition the
first-order models of the core ontology. Using these invariants, semantic mappings be-
tween application ontologies and PSL may be semi-automatically generated. In addition,
the direct relationship between the PSL terminology and the invariants improves the abil-
ity to verify the generated results. These semantic mappings may then be used to perform
integration between applications or ontologies. They may also be used to analyze the ap-
plication as well as to bootstrap an ontology to those applications which do not have an
associated, explicit, formal ontology.

1

2 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

2. AN ARCHITECTURE FORSEMANTIC INTEGRATION

This section describes the Interlingua Architecture, the basic approach to application
integration employed in this work. Semantic integration is then presented in terms of this
architecture as the tasks and questions which must be performed and answered.

2.1. The Interlingua Architecture. Informally, semantic mappings express the meaning
of a term from one ontology in terms of another ontology; each such mapping may sim-
ply link one term to another or may specify a complex transformation. More formally,
semantic mappings can be characterized by the notion of definable interpretation ([10]):
If N is a structure in the languageL0 andM is a structure in the languageL , then
we say thatN is definably interpretable inM if we can interpret the symbols ofL0 so
that there exists a substructureM that is isomorphic toN . Semantic mappings are the
sentences that axiomatize this interpretation. The techniques that we discuss in this pa-
per semi-automatically generate such semantic mappings by using human input to identify
properties of the models that will be preserved by isomorphism.

In current practice, semantic mappings are manually generated directly between ap-
plication ontologies. However, for software applications operating in open environments
such as the Semantic Web, it cannot be assumed that mappings have been generated prior
to interaction between applications. In [8], a number of architectures have been proposed
to support semantic integration in such an open environment. Each architecture is distin-
guished by the origins of the semantic mappings, the existence of a mediating ontology,
and the degree of agreement that exists among the anticipated community of interacting
software.

The Interlingua Architectureis adopted within this work, the distinguishing feature of
which is the existence of a mediating ontology that is independent of the applications’
ontologies and is used as a neutral interchange ontology ([2]). Semantic mappings be-
tween application and interlingua ontologies are manually generated and verified prior to
application interactions [3]. This process of creating the mapping between the application
ontology and the interlingua ontology is identical to the process of creating a mapping di-
rectly between two application ontologies, the key difference of this approach being that
application ontologies are integrated with the interlingua rather than each other.

The most obvious property of this approach is the dramatic reduction of the number
of translators which must be constructed. The manual, point-to-point approach requires
on the order ofn2 translators, one for each pairing, while the interlingua approach man-
dates only one translator per application. In addition to the initial costly development of
a translator for each pairing under the point-to-point approach, if one application’s ontol-
ogy is changed, each associated translator must also be updated. Using an interlingua,
only the translator to and from the interlingua must be maintained for each application1. A
demonstration of these properties from the domain of systems for managing manufacturing
processes is shown in Figure 1.

Importantly, the point-to-point approach does not work in environments which feature
unanticipated software interactions. Interaction can only occur between pairs of software
for which a specific translator has been previously developed. Using the interlingua model,
a mapping between the application ontology and the interlingua is all that is necessary to
interact with the community of software for which mappings to and from the interlingua

1See [14] for a more detailed discussion of the tradeoffs between the point-to-point and interlingua
approaches.

SEMANTIC INTEGRATION THROUGH INVARIANTS 3

Product Data
Management Management

Production

Design/
Modeling

Process
Planning

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��������������������������������������

���

���

	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���

���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

���

���

��

��

���

���

���

���

���

���

��

��

���

���

��

��

���

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

#�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�#

$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$

%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%

&�&�&�&�&�&�&�&&�&�&�&�&�&�&�&&�&�&�&�&�&�&�&&�&�&�&�&�&�&�&&�&�&�&�&�&�&�&

'�'�''�'�''�'�''�'�''�'�'

(�(�((�(�((�(�((�(�((�(�()�)�)�)�)*�*�*�*�*

+�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,

--
--
--
--
--

..
..
..
..
..

/�/�//�/�//�/�//�/�//�/�/

0�0�00�0�00�0�00�0�00�0�0

1�1�11�1�11�1�11�1�11�1�1

2�2�22�2�22�2�22�2�22�2�233
33
33
33
33

44
44
44
44
44

5�5�5�5�56�6�6�6�6

Training

Scheduling Simulation

Analysis

(a) Point-to-point translation requires on the order
of n2 translators be developed and maintained.

Product Data
Management

Design/
Modeling

Process
Planning

Management
Production

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Scheduling Simulation

Analysis

Training

Interlingua

(b) With an interlingua, onlyn translators must be
developed and maintained.

FIGURE 1. Translation pairings for a set of manufacturing process systems.

have also been developed. This eliminates the problem of changes in applications mandat-
ing changes to all other systems, and allows existing software to seamlessly interoperate
with newly introduced applications, capabilities not possible using manual, point-to-point
mappings.

2.2. Integration and Translation. Under the Interlingua Architecture, there are two steps
in translation: the execution of the mapping from the application ontology to the inter-
lingua and subsequently from the interlingua to the target application’s ontology. If the
application ontologies and the interlingua ontology are specified using the same logical
language, then translation can be accomplished by applying deduction to the axioms of the
interlingua ontology in conjunction with the formal mapping rules ([3], [2]). In effect, a
direct mapping rule from one application’s ontology to the target application’s ontology
is inferred from the two separate rules. If these mapping rules have been verified to pre-
serve semantics between the application and interlingua ontology, it is guaranteed that this
translation between the applications also preserves semantics.

An important question is then whether the existence of the pre-defined mappings be-
tween the application ontologies and the interlingua ontology enables the automatic gen-
eration of a point-to-point mapping between the applications’ ontologies. More formally,
if M1 andM2 are both definably interpretable inN , is M1 definably interpretable in
M2? Answering this question is equivalent to the task of semantic integration within the
Interlingua Architecture. It is addressed in this work by comparing the mappings between
application ontologies and the interlingua.

3. INVARIANT-BASED ONTOLOGY DESIGN

Many ontologies are specified as taxonomies or class hierarchies, yet few provide for-
mal justification for their classification scheme. If we consider ontologies of mathematical
structures, we see that logicians classify models by using properties of models, known as
invariants, that are preserved by isomorphism.

For some classes of structures, invariants can be used to classify the structures up to
isomorphism; for example, vector spaces can be classified up to isomorphism by their
dimension. For other classes of structures, such as graphs, it is not possible to formulate
a complete set of invariants. However, even without a complete set, invariants can still
be used to provide a classification of the models of a theory. Figure 2 provides such an

4 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

◦ Is the shape a polygon withn≥ 3 sides?
◦ Is the shape convex?
◦ Is the symmetry group consisting of rotations and reflections of the shape

equivalent toDn?

(a) Several invariant properties of geometric shapes.

Regular polygons≡ convex polygons w/n≥ 3 sides and symmetry group≡ Dn.

(b) Definition for the class of regular shapes using the above invariants.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

yes,n = 6;
convex;

Symm6≡ Dn

⊃ ¬ regular

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

yes,n = 8;
convex;

Symm≡ Dn

⊃ regular

�������
�������
�������
�������

�������
�������
�������
�������

yes,n = 8;
concave;

Symm6≡ Dn

⊃ ¬ regular

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

yes,n = 3;
convex;

Symm≡ Dn

⊃ regular

(c) Several shapes classified as regular or irregular through comparison to the definition.

FIGURE 2. The use of invariants in constructing a terminology of geo-
metric shapes. Although not a complete set, these invariants do support
the formal definition of terms in the language.

example from the domain of geometric shapes. Some invariants of objects in this domain
are given in Figure 2(a). These are used in Figure 2(b) to define the class of regular shapes.
Several shapes are classified against this definition and the results given in Figure 2(c).

Notice that each question in Figure 2(a) corresponds to an invariant for an object, and
each value of the invariant is a possible answer to the question, as in Figure 2(c). We will
later use this same correspondence between invaraints and questions to specify semantic
mappings for ontologies such as PSL.

Of particular interest in this example is the invariant that is the symmetry group of the
object. In this case, symmetry is the preservation of the shape of the object even after we
rotate or reflect it along an axis. If we take a triangle and rotate it about its center through
an angle of 120◦, the resulting figure looks exactly the same as when it started. Similarly,
the figure looks the same when reflecting it about a line that contains a vertex and bisects
the opposite edge.

For models of ontologies such as PSL, the symmetries are more abstract, but the basic
idea remains – some structure within a model of the ontology will be preserved even after
subjecting it to some sort of transformation. The invariants that are used in ontology design
are therefore generalizations of symmetry groups.

SEMANTIC INTEGRATION THROUGH INVARIANTS 5

(a) Any transformation that preserves the suit also preserves a flush. In this example, the 10♦ is exchanged
with the 4♦.

(b) No transformation that preserves the suit also preserves a royal straight. In this example, the 10♦ is
exchanged with the 5♦.

(c) Some transformations that preserve the suit also preserve a pair. In this example, the 4♦ is exchanged
with the 10♦.

FIGURE 3. Poker hands can be classified by considering the sets of
transformation that preserve the hand. In this example, we we exchange
cards of the same rank, but they are allowed to be of different suits.

To illustrate how invariants are used to provide the classification and terminology of an
ontology, we will consider the treatment of preconditions in the PSL Ontology. Precon-
ditions specify the constraints under which activities can possibly occur in some domain.
Within the PSL Ontology, occurrence trees characterize all sequences of activity occur-
rences; however, not all of these sequences will intuitively be physically possible within
the domain. Consequently, we need to characterize the subtree of an occurrence tree that
consists only of possible sequences of activity occurrences; such a subtree is referred to
as a legal occurrence tree, and elements of this subtree are referred to aslegal activity
occurrences.

The most prevalent class of occurrence constraints is that ofmarkovianactivities, activ-
ities whose preconditions depend only on the state prior to their occurrences (e.g., to with-
draw money from a bank account, there must be sufficient funds in the account). The class
of markovian activities is defined in the PSL definitional extensionstate precond.de f,
a portion of which is given in Figure 4. There are also activities whose preconditions
intuitively are not markovian, but depend on the time at which the activity occurs (e.g.,

6 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

Transformation Poker Preconditions

All transformations of some kind preserve le-
gality

flush markov precond

A subset of transformations of some kind pre-
serve legality

pair partial state

No transformations of some kind preserve le-
gality

royal straight rigid state

TABLE 1. Analogy between the one kind of transformation that pre-
serves legal poker hands and the permutations that preserve legal activity
occurrences.

transactions must be completed during office hours), and any process ontology should be
able to capture these constraints as well.

The invariant that is associated with markovian preconditions can be illustrated by the
symmetries of poker hands. Poker is played with a standard pack of fifty two cards, which
are ranked Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2; for each rank, there are four
suits –♠,♥,♦, and♣. Although there are ten possible poker hands, we will focus on three
of these hands. Aflush is a hand where all of the cards are the same suit, e.g., all cards
have the♥ suit. A royal straightis the sequence Ace-King-Queen-Jack-10, regardless of
the suit. With apair, there are two cards of any rank, matched with three distinct cards.

We can classify poker hands by characterizing which of them are preserved by different
kinds of transformations (see Figure 3). In one kind of transformation, we change the suit
of a single card, but we must preserve the rank, e.g., change a 3♣ into a 3♥. In another
kind of transformation, we change the rank of a single card, but we must preserve the suit,
e.g., change a 3♣ into a 7♣. The first kind of transformation will always preserve a royal
straight but it will never preserve a flush, while the second kind of transformation will
always preserve a flush but never preserve a royal straight. There exist transformations of
either kind that will preserve a pair, provided that the rank of the changed card is not the
rank of one of the cards in the pair.

The classification of activities with respect to preconditions is analogous to this card
game (see Table 1). Rather than preserve poker hands, we want to characterize which
permutations of activity occurrences within a model of the PSL Ontology preserve legal
occurrences of activities in an occurrence tree. Rather than change cards with the same
suit, we consider permutations of activity occurrences within a model that agree on the set
of fluents that hold prior to the activity occurrences in an occurrence tree. The invariant
in this case is the group of such permutations that preserve the legal occurrences of the
activity. If any such permutation will preserve legal occurrence, then the activity is the
markov precondclass, as axiomatized in Figure 4. With apartial stateactivity, If only a
subset of such permutations will preserve legal occurrences, then there exist additional non-
markovian constraints on the legal occurrences of the activity, and this is axiomatized by
the partial stateclass in Figure 4. If no such permutation will preserve legal occurrences,
then the constraints on the legal occurrences of the activity are completely non-markovian;
this is axiomatized by therigid stateclass in Figure 4.

In general, the set of models for the core theories of an ontology are partitioned into
equivalence classes defined with respect to the set of invariants of the models. Each equiv-
alence class in the classification of the models of the ontology is axiomatized using a defi-
nitional extension of the ontology. Each definitional extension in the ontology is associated

SEMANTIC INTEGRATION THROUGH INVARIANTS 7

(1) (∀o1,o2)stateequiv(o1,o2)≡
(∀ f) (prior(f ,o1)≡ prior(f ,o2))

(2) (∀a,o1,o2) possequiv(a,o1,o2)≡
(poss(a,o1)≡ poss(a,o2))

(3) (∀a)markov precond(a)≡
((∀o1,o2)stateequiv(o1,o2)⊃ possequiv(a,o1,o2))

(4) (∀a) partial state(a)≡
(∃o1) ((∀o2)stateequiv(o1,o2)⊃ possequiv(a,o1,o2))
∧(∃o3,o4)stateequiv(o3,o4)∧¬possequiv(a,o3,o4)

(5) (∀a) rigid state(a)≡
(∀o1)(∃o2)stateequiv(o1,o2)∧¬possequiv(a,o1,o2)

FIGURE 4. Classes of activities with state-based preconditions from the
definitional extensionstate precond.de f. The additional relations are
defined to capture the different transformations used to determine the
symmetries. Two activity occurrenceso1,o2 arestateequiviff there ex-
ists a permutation of activity occurrences that preserves the fluents that
hold prior to the activity occurrences. The two activity occurrences are
possequiviff there exists a permutation of activity occurrences that pre-
serves legal occurrences of the activity.

with a unique invariant; the different classes of activities or objects that are defined in an
extension correspond to different properties of the invariant. In this way, the terminology
of the ontology arises from the classification of the models of the core theories with respect
to sets of invariants.

4. SEMANTIC MAPPING VIA TRANSLATION DEFINITIONS

As noted in Section 2, the generation of semantic mappings between two ontologies
T1 andT2 is equivalent to the formal problem of determining whetherT1 is definably in-
terpretable inT2. Although in general an extremely difficult problem, the invariants used
in the classification of the models of the ontologies can also be used to generate semantic
mappings. Semantic mappings preserve models—each model of the ontologyT1 is mapped
to an isomorphic substructure of a model of the ontologyT2. Since invariants are properties
of the models that are preserved by isomorphism, semantic mappings must also preserve
the invariants. Therefore, if models ofT1 andT2 are characterized up to isomorphism by
some sets of invariants, thenT1 is definably interpretable inT2 iff there is a mapping of the
invariants ofT1 to the invariants ofT2; a concept inT1 will be mapped to a concept inT2 iff
the invariants have the same values.

Translation definitionsspecify the semantic mappings between the interlingua ontology
and application ontologies. Following the above discussion, they are generated using the
organization of the definitional extensions, each of which corresponds to a different invari-
ant. Every class of activity, activity occurrence, or fluent in an extension corresponds to a

8 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

different value for the invariant. The consequent of a translation definition is equivalent to
the list of invariant values for members of the application ontology class.

Translation definitions have a special syntactic form—they are biconditionals in which
the antecedent is a class in the application ontology and the consequent is a formula that
uses only the lexicon of the interlingua ontology. For example, the concept ofAtomicProcess
in the OWL-S Ontology2 ([11]) has the following translation definition with respect to the
PSL Ontology:

(forall (?a)
(iff (AtomicProcess ?a)

(and (atomic ?a)
(markov precond?a)
(markove f f ects?a))))

The invariant corresponding to themarkov precondclass was discussed in the preced-
ing section; the invariants corresponding to themarkove f f ectsandcontext f reeclasses
are based on groups consisting of permutations of activity occurrences that preserve effects
(i.e., fluents that are achieved or falsified by activity occurrences).

4.1. Semi-Automatic Generation of Semantic Mappings.The generation of semantic
mappings through the specification of invariant values has been implemented in the PSL
project’s Twenty Questions mapping tool3. Each question corresponds to an invariant, and
each value of the invariant is a possible answer to the question. Any particular activity,
activity occurrence, or fluent will have a unique value for the invariant; however, if we
are mapping a class of activities, occurrences, or fluents from some application ontology,
then different members of the class may have different values for the same invariant. In
such a case, one would respond to a question by supplying multiple answers. By guiding
and supporting users in creating translation definitions without requiring them to work
directly with first order logic axiomatizations, the Twenty Questions tool provides a semi-
automated technique for creating semantic mappings.

Figure 5 gives a sample question corresponding to the symmetries of fluents and legal
activity occurrences; each possible answer corresponds to a different value of the invariant,
which is the group of permutations that preserve legal activity occurrences. Following the
axiomatizations given in Figure 4 for the classes of activities corresponding to these values,
selecting the first answer would generate the translation definition:

(forall (?a)
(iff (myclass ?a)

(markov_precond ?a)))

Selecting the first two answers would give the translation definition:

(forall (?a)
(iff (myclass ?a)

(or (markov_precond ?a)
(partial_state ?a))))

In this latter case, some activities inmyclasswill have Markov preconditions while other
activities will not.

2OWL-S is an OWL (Ontology Web Language) ontology for describing Web services, created by a coalition
of researchers through the support of the DARPA Agent Markup Language (DAML) program. OWL-S supplies
Web service providers with a core set of markup language constructs for describing the properties and capabilities
of their Web services in unambiguous, computer-interpretable form.

3Available athttp://ats.nist.gov/psl/twenty.html.

SEMANTIC INTEGRATION THROUGH INVARIANTS 9

2. Constraints on Atomic Activity Occurrences based on State
Are the constraints on the occurrence of the atomic activity based only on the state prior

to the activity occurrence?
2 Any occurrence of the activity depends only on fluents that hold prior to the

activity occurrence.
2 Some (but not all) occurrences of the activity depend only on fluents that hold

prior to the activity occurrence.
2 There is no relationship between occurrences of the activity and the fluents

that hold prior to occurrences of the activity.

FIGURE 5. One of the Twenty Questions, used to classify activities with
state-based preconditions.

4.2. Validating Semantic Mappings. The Twenty Questions tool illustrates how the clas-
sification of the models of the PSL Ontology determines the syntactic form of the trans-
lation definitions. The consequent of the translation definition specifies the values of the
invariants that capture the intended semantics of the class of activities that appear in the
antecedent of the translation definition. However, this raises the issue of validating the
semantic mappings that are generated in this way—how can we determine the correct-
ness of the mappings between an application ontology and the interlingua ontology? If
the application ontologies are axiomatized, then we can verify the semantic mappings by
proving that they do indeed preserve the models of the ontologies. This can be done in by
demonstrating that the class of models of the application ontology is axiomatized by the
interlingua, together with the translation definitions.

In practice, the validation of semantic mappings is complicated by the fact that few
software applications have explicitly axiomatized ontologies. In such cases, the Twenty
Questions tool can also be used to define a formal ontology for the software applications.
This is afforded by the assumption of theOntological Stance([7]), the main tenet of which
is that a software application may be modeled as if it were an inference system working on
an axiomatized ontology.

The Ontological Stance is an operational characterization of the set of intended models
for the application’s terminology. In this sense, it should be treated as a semantic constraint
on the application—it does not postulate a specific set of axioms, but rather a set of intended
models. Given a software application, there exists a class of modelsM A such that any
sentenceΦ is decided by the application to be satisfiable iff there existsM ∈M A such
thatM |= Φ.

By answering the questions presented by the Twenty Questions tool, the application
designer is capturing the application’s set of intended models. Given correct input, the
translation definitions generated by the tool together with the interlingua ontology define
an explicit axiomatization of the application’s previously implicit ontology.

To validate the attributed ontology, the generated translation definitions may be treated
as falsifiable hypotheses and tested empirically. By the Ontological Stance, the application
decides some sentenceΦ to be provable iffTpsl∪Ttranslation |= Φ whereTpsl is the set of
axioms for the PSL Ontology andTtranslation is the set of translation definitions that are
being verified. In this way, it may be evaluated whether or not the attributed ontology
correctly predicts inferences made by the software, and consequently whether or not the
translation definitions accurately capture the semantics of the application.

10 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

5. COMPARISON OFSEMANTIC INTEGRATION PROFILES FORINTEGRATION

The set of translation definitions for all concepts in a software application’s ontology
defines asemantic integration profilefor that application. If the interlingua hasm invariants
and each invariantn values, then an application profile will have the form:

(forall (?a)
(iff (C1-onto ?a)
(and (or (p11 ?a) ... (p1n ?a))
...
(or (pm1 ?a) ... (pmn ?a)))))

Each clause in the profile corresponds to a different invariant; each literalpij ?a) is
a class of objects in the interlingua ontology, all of whose members have the same value
of some invariant. For example, suppose Alice’s ontology contains a class of activities
(C1-alice ?a) which has unconstrained preconditions (i.e., they are always possible)
and whose effects are either context-free or they depend only on the state prior to occur-
rences of the activities. Suppose that Bob’s ontology contains a class of activities whose
preconditions are either unconstrained or markovian and whose effects are context-free.
Using the invariants for the PSL Ontology, the Twenty Questions tool would generate the
following translation definitions:

(forall (?a)
(iff (Calice ?a)

(and (unconstrained ?a)
(or (markov_effects ?a)

(context_free ?a)))))

(forall (?a)
(iff (Cbob ?a)

(and (context_free ?a)
(or (markov_precond ?a)

(unconstrained ?a)))))

As noted in Section 2.2, translation between integration targets may be accomplished by
applying deduction to the axioms of the interlingua, the semantic mappings, and the input
to be translated. Given the above example mappings from the two application ontologies
of Alice and Bob into PSL, the following mappings between the two concepts may be
inferred:

(forall (?a)
(implies (context_free ?a)

(implies (Calice ?a)
(Cbob ?a))))

(forall (?a)
(implies (unconstrained ?a)

(implies (Cbob ?a)
(Calice ?a))))

Thus, if an activity has context-free effects, then Bob’s class of activities subsumes
Alice’s class; if an activity has unconstrained preconditions, then Alice’s class of activities
subsumes Bob’s class.

Such inferred mappings will in general take the form of:

SEMANTIC INTEGRATION THROUGH INVARIANTS 11

PROFILE-COMPARE(Pa,Pb)
1 for eachCa ∈ Pa
2 do for eachCb ∈ Pb
3 do {ga,gb}← CONCEPT-COMPARE(Ca,Cb)
4 OUTPUT(‘ga⊃ (Ca⊃Cb)’)
5 OUTPUT(‘gb⊃ (Cb⊃Ca)’)

CONCEPT-COMPARE(Ca,Cb)
1 Ra← true;Rb← true
2 for i← 1 to m
3 do s← VALUES(Ca, i)∩ VALUES(Cb, i)
4 if s 6= /0
5 then Ra← CONJUNCTION(Ra,DISJUNCTION(s))
6 Rb← CONJUNCTION(Rb,DISJUNCTION(s))
7 else ifVALUES(Ca, i) 6= /0∧ VALUES(Cb, i) 6= /0
8 then error “No mapping.”
9 return {Ra,Rb}

FIGURE 6. The PROFILE-COMPARE algorithm for determining rela-
tionships between ontologies, given the semantic integration profiles.

(forall (?a)
(implies (and (or (p11 ?a) ... (p1n ?a))
...
(or (pm1 ?a) ... (pmn ?a)))
(implies (Calicei ?a)
(Cbobj ?a))))

The antecedents of these sentences can be considered to be guard conditions that deter-
mine which activities can be shared between the two ontologies. This can either be used
to support direct exchange, or simply as a comparison between the application ontolo-
gies. In this example, thealice can export anyunconstrainedactivity description tobob
and bob can export anycontext f ree activity description toalice; however,alice can-
not import markov precondactivity descriptions frombob and bob cannot import any
markove f f ectsactivity descriptions fromalice.

Although inferred implicitly during translation, these relationships may be explicitly
determined by the simple PROFILE-COMPARE algorithm presented in Figure 6. Explicitly
inferring these mappings offers several capabilities. If run-time translation efficiency is
important, then these point-to-point mapping rules could be generated upon first interac-
tion and then cached as explicit rules to be used in subsequent interactions. A detailed
discussion of such tradeoffs and overlaps between point-to-point and interlingua-based in-
tegration approaches is presented in [14].

In addition, by explicitly generating such mappings, it may be possible to use simpler
inference engines to perform translation, rather than requiring a full first order reasoner to
implicitly translate using axioms of the interlingua, the semantic mappings, and the input
to be translated. Importantly, such explicit mappings may also be used by the application
designers to examine the structure of their application as well as to to evaluate relationships
and coverage relative to the interlingua or other ontologies.

12 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

6. OPEN PROBLEMS

Several important issues related to semantic integration have not been addressed so far
in this work, including:

• Translation Definitions for Primitive Relations
All of the translation definitions generated by the Twenty Questions tool are

restricted to semantic mappings using only the definitional extensions of the PSL
Ontology; they do not provide general semantic mappings between concepts within
the core theories of the ontology.

Translation definitions are also restricted to mappings between the classes of
the application ontology and the PSL Ontology; they do not map relations in the
different ontologies. For example, different applications may impose restrictions
on thesubactivityrelation in the composition of complex activities—in one on-
tology, the relation may not be transitive, while in the other ontology, the relation
may be isomorphic to a bipartite graph consisting of primitive and nonprimitive
activities. Even though both of these relations are definably interpretable within
the PSL Ontology, the mappings do not use invariants, and there is no general way
of generating a direct mapping between the two ontologies.

This leads to the following question:
Under what conditions does the existence of a semantic integration profile

guarantee the existence of a definable interpretation of primitive relations with
respect to the invariants in the profile?
• Incomplete Sets of Invariants

The approach to semantic integration taken in this paper relies on the existence
of a complete set of invariants for the models of the ontology. However, there
are theories (e.g. graphs) for which such a set of invariants cannot be found. In
such cases, two concepts may have equivalent semantic integration profiles (i.e.,
equivalent values for the invariants) yet not have isomorphic intended models.

In some cases, this may require the introduction of new core theories to ax-
iomatize the intended models of the concepts. For example, a theory of resource
requirements would be required to distinguish between different classes of manu-
facturing and logistics activities. Since this does not eliminate the problem if the
models of the new core theories also do not have complete sets of invariants, we
are faced with the following question:

Given a theory whose models cannot be completely classified by some set of
invariants, how can the translation definitions be augmented by more general rel-
ative interpretation axioms?
• Recognizing Classes from Domain Theories

The PSL Ontology makes a distinction between the axioms of the ontology and
the axioms of a domain theory that uses the ontology, which are characterized as
syntactic classes of sentences that are satisfied elements of the models. For ex-
ample, traditional precondition axioms are characterized as the class of sentences
that are satisfied bymarkov precondactivities, and traditional effect axioms are
equivalent to the class of sentences that are satisfied bymarkove f f ectactivities.
On the other hand, many process ontologies used by software applications do not
explicitly specify classes of activities, but only specify syntactic classes of process
descriptions. A comprehensive account of semantic integration must therefore ad-
dress the following question:

SEMANTIC INTEGRATION THROUGH INVARIANTS 13

Is it always possible to automatically determine the profile for a class using
only the domain theory associated with elements of the class?

7. CONCLUSIONS

This paper has described how model-theoretic invariants of an ontology can be used to
specify semantic mappings translation definitions between application ontologies and an
interlingua. In particular, examples have been presented using the Process Specification
Language (PSL) ontology as the neutral medium in integration.

The sets of models for the core theories of PSL are partitioned into equivalence classes
defined with respect to the invariants of the models. Each equivalence class in the classi-
fication of PSL models is axiomatized using a definitional extension of PSL. The Twenty
Questions tool that is based on these invariants and definitional extensions supports semi-
automatic generation of semantic mappings between an application ontology and the PSL
Ontology.

This approach can be generalized to other ontologies by specifying the invariants for
the models of the axiomatizations. Future work in this area includes developing software
to generate mappings based on profiles created with the Twenty Questions tool and appli-
cation to translation between PSL and other ontologies (such as OWL-S) and translators
for existing process modelers and schedulers.
Acknowledgements: This work was supported by the Precision Engineering Project within the Man-
ufacturing Engineering Laboratory at the National Institute of Standards and Technology (NIST); Of-
fice of Naval Research (ONR) Grant N00014-01-1-0618; and NIST Grant #70NAN33H1026, funded
by the National Science Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and not necessarily the supporting organizations.

REFERENCES

[1] Bouquet, P., Serafini, L., Zanobini, S., and Benerecetti, M. (2003) An Algorithm for Semantic
Coordination.Semantic Integration Workshop, International Semantic Web Conference 2003,
21–26.

[2] Ciocoiu, M., Gruninger M., and Nau, D. (2001) Ontologies for integrating engineering applica-
tions,Journal of Computing and Information Science in Engineering, 1:45-60.

[3] Ciocoiu, M. 2002Ontology-based Semantics, Ph.D. thesis, Department of Computer Science,
University of Maryland, College Park.

[4] Duschka, O.M. and Genesereth, M.R. 1997. Infomaster - an information integration tool. In
Proceedings of the International Workshop on Intelligent Information Integration. Freiburg, Ger-
many.

[5] Gruninger, M. (2003) Applications of PSL to Semantic Web Services,Workshop on Semantic
Web and Databases. Very Large Databases Conference, Berlin.

[6] Gruninger, M. (2003) A Guide to the Ontology of the Process Specification Language, inHand-
book on Ontologies in Information Systems, R. Studer and S. Staab (eds.). Springer-Verlag.

[7] Gruninger, M. and Menzel, C. (2003) Process Specification Language: Principles and Applica-
tions,AI Magazine, 24:63-74.

[8] Gruninger, M. and Uschold, M. (2003) Ontologies and Semantic Integration, inSoftware Agents
for the Warfighter, Information Technology Assessment Consortium, to appear.

[9] Mahdavan, J., Bernstein, P., and Rahm, E. (2001) Generic Schema Matching with Cupid,Proc.
27th VLDB Conference, 49–58.

[10] Marker, D. (2000)Model Theory: An Introduction. Springer-Verlag.
[11] McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services,IEEE Intelligent Systems,

Special Issue on the Semantic Web. 16:46–53, March/April, 2001.
[12] Noy, N. and Musen, M. (2000) PROMPT: Algorithm and tool for automated ontology merging

and alignment, Proceedings of AAAI-2000.

14 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

[13] Stuckenschmidt, H. and Visser, U. (2000) Semantic Translation Based on Approximate Reclas-
sification. In Proceedings of the Seventh International Conference on Knowledge Representation
and Reasoning, Breckenridge, Colorado.

[14] Uschold, M., Jasper, R. and Clark, P. 1999. Three Approaches for Knowledge Sharing: A Com-
parative Analysis. InProceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling,
and Management (KAW’99).

INSTITUTE FORSYSTEMSRESEARCH, UNIVERSITY OF MARYLAND , COLLEGE PARK , MD 20742,gruning@cme.nist.gov

GEOMETRIC AND INTELLIGENT COMPUTING LABORATORY, DEPT. OF COMPUTER SCIENCE, DREXEL

UNIVERSITY, 3141 CHESTNUT STREET, PHILADELPHIA , PA 19104,tjkopena@cs.drexel.edu

