

THE LOGIC OF ENTERPRISE MODELLING

M. Gruninger and M.S. Fox

Department of Industrial Engineering, University of Toronto

4 Taddle Creek Road, Toronto, Ontario M5S 3G9 CANADA
tel:+1-416-978-6823 fax:+1-416-971-2479 email:{msf, gruninger}@ie.utoronto.ca

1.0 INTRODUCTION

An Enterprise Model is a computational representation of the structure, processes, information, re-
sources, goals and constraints of a business, government activity, other organisational system. It
can be both definitional and descriptive - spanning what should be and what is. The role of an en-
terprise model is to achieve model-driven enterprise design, analysis and operation.

A number of issues exist concerning the design of Enterprise Models.

Reusability

 is concerned
with the large cost of building enterprise-wide data models. Is there such a thing as a generic, re-
usable enterprise model whose use will significantly reduce the cost of information system build-
ing? A second issue is the

Consistent Usage

 of the model: Given the set of possible applications of
the model, can the model's contents be precisely and rigorously defined so that its use is consistent
across the, enterprise? A third issue is model

Accessibility

. Given the need for people and other
agents to access information relevant to their role, can the model be defined so that it supports que-
ry processing, both surface and shallow

1

. Lastly, there is the

Selection

 issue: How do I know which
is the right Enterprise Model for my application?

A many enterprise models have been proposed over the last fifteen years, including those by:

•

CAMI:

 A US-based non-profit group of industrial organizations for creating manufacturing
software and modelling standards.

•

CIM-OSA:

 A reference model developed by the European Esprit project: AMICE [Jorysz &
Vernadat 90a; 90b] [Klittich 90].

•

ICAM:

 A project run by the Materials Lab. of the US Air Force [Davis et al. 83] [Martin et al.
83] [Martin & Smith 83].

•

IWI:

 A reference model developed at the Institut fur Wirtschaftsinformatk Universitat des
Saarlandes, Germany [Scheer 89].

The primary focus of these models has been on reusability; they all provide a data dictionary of
object classes which can be reused, mostly for manufacturing organisations, Consistency of usage
depends upon the clarity of the written documentation. Accessibility is limited to surface access
provided by typical database systems. Lastly, the appropriateness of the model, i.e., selection, is

1. By surface, level processing we mean the direct retrieval of data that is represented explicitly in
the model. By shallow level processing we mean retrieval that requires a small number of deduc-
tions, i.e., 1-100, in order to answer the query.

Gruninger, M., and Fox, M.S., (1996), “The Logic of Enterprise Modelling”,

Modelling and
Methodologies for Enterprise Integration

, P. Bernus & L. Nemes (Eds.), Cornwall, Great Brit-
ain: Chapman and Hall.

left up to the user.

It is our belief that the issues of reusability, consistent usage, accessibility and selection can best
be addressed by taking a more formal approach to enterprise modelling. By formal, we are not re-
ferring to analytical models as found in Operations Research, but to logical models as found in
Computer Science. Towards this end, the T'OVE ontology [Fox et al. 93] has been developed. An
ontology [Gruber 93] is a formal description of entities and their properties; it forms a shared ter-
minology for the objects of interest in the domain, along with definitions for the meaning of each
of the terms.

The goal of the TOVE (TOronto Virtual Enterprise) project is to create an enterprise ontology that
has the following characteristics: 1) provides a shared terminology for the enterprise that every ap-
plication can jointly understand and use, 2) defines the meaning (semantics) Of each term in a pre-
cise and as unambiguous manner as possible using First Order Logic, 3) implements the semantics
in a set of Prolog axioms that enable TOVE to automatically deduce the answer to many “common
sense” questions about the enterprise, and 4) defines a symbology for depicting a term or the con-
cept constructed thereof in a graphical context.

The TOVE ontology currently spans knowledge of activity [Gruninger & Fox 94], time, and cau-
sality, resources [Fadel 94] [Fadel et al. 94], and more enterprise oriented knowledge such as cost
[Tham et al. 94], quality [Kim & Fox 94] [Kim et al. 95] and organization Structure [Fox et al. 95]
and agility [Atefi 95]. The TOVE Testbed provides an environment for analyzing enterprise ontol-
ogies; it provides a model of an enterprise and tools for browsing, visualization, simulation, and
deductive queries.

In this paper we present a logical framework for the TOVE Enterprise Model. We first review our
process for engineering an ontology. We then describe our logical framework which is based on
Reiter's solution of the frame problem [Reiter 91] and Pinto's formalization of occurrence and the

T
er

m
in

ol
og

y L
ogical T

heory

Symbology

• Generic across
 many domains
• Key distinctions

• Definitions and
 constraints
• Defined using FOL
• Interpreted using
 Prolog
• Provides automated
 question answering

• Graphic representation
 of terms
• X windows based
• Multi-state
• Active image
• Onscreen modification

incorporation of time within the situation calculus [Pinto & Reiter 93]. We then provide an onto-
tology for activity and extensions for resource spoilage. This is followed by example queries that
the ontology supports.

2.0 ONTOLOGY ENGINEERING

For any given ontology, the goal is to agree upon a shared terminology and set of constraints on
the objects in the ontology. We must agree on the purpose and ultimate use of our ontologies, We
must therefore provide a mechanism guiding the design of ontologies, as well as providing a frame-
work for evaluating the adequacy of these ontologies. Such a framework allows a more precise
evaluation of different proposals for an ontology, by demonstrating the competency of each pro-
posal with respect to the set of questions that arise from the applications. These justify the existence
and properties of the objects with the ontology.

The process of engineering an ontology that we have developed, starts from scenarios describing
the applications which the model is to support. Next, we define a set of informal competency ques-
tions [Gruninger & Fox 94] that represent the types of the information the model is to provide to
each application. Next, an initial terminology composed of objects, attributes and relations is de-
signed. The terminology and questions are then iteratively refined until a precise and unambiguous
set of terms are created

Motivating Scenarios:

 The development of ontologies is motivated by scenarios that arise in the
applications. In particular, such scenarios may be presented by industrial partners as problems
which they encounter in their enterprises. The motivating scenarios often have the form of story
problems or examples which are not adequately addressed by existing ontologies. A motivating
scenario also provides a set of intuitively possible solutions to the scenario problems. These solu-
tions provide a first idea of the informal intended semantics for the objects and relations that will
later be included in the ontology.

•

Informal Competency Questions:

 Given the motivating scenario, a set of queries will arise
which place demands on an underlying ontology. We can consider these queries to be require-
ments that are in the form of questions that an ontology must be able to answer. These are the
informal competency questions, since they are not yet expressed in the formal language of the
ontology.

Ideally, the competency questions should be defined in a stratified manner, with higher level
questions requiring the solution of lower level questions. It is not a well-designed ontology if
all competency questions have the form of simple lookup queries; there should be questions
that use the solutions to such simple queries.

These competency questions do not generate ontological commitments; rather, they are used to
evaluate the ontological commitments that have been made. They evaluate the expressiveness
of the ontology that is required to represent the comptency questions and to characterize their
solutions.

•

Specification in First-order Logic -- Terminology:

Once informal competency questions
have been posed for the proposed new or extended ontology, the terminology of the ontology
must then be specified using first-order logic.

Recall that an ontology is a formal description of objects, properties of objects, and relations
among objects. This provides the language that will be used to express the definitions and con-
straints in the axioms. This language must provide the necessary terminology to restate the
informal competency questions.

The first step in specifying the terminology of the ontology is to identify the objects in the
domain of discourse. These will be represented by constants and variables in the language.
Attributes of objects are then defined by unary predicates: relations among objects defined
using n-ary predicates.

•

Specification in First-Order Logic -- Axioms:

 The axioms in the ontology specify the defini-
tions of terms in the ontology and constraints on their interpretation; they are defined as first-
order sentences using the predicates of the ontology. It is important to understand the signifi-
cance of using axioms to define the terms and constraints for objects in the ontology. Simply
proposing a set of objects alone, or proposing a set of ground terms in first-order logic, does
not constitute an ontology. Axioms must be provided to define the semantics, or meaning, of
these terms.

It is also important to realize that this is not the implementation of the ontology; it is the speci-
fication of the ontology. However, the implementation of the ontology should be translatable
into KIF.

The process of defining axioms is perhaps the most difficult aspect of defining ontologies.
However, this process is guided by the formal competency questions. As with the informal
competency questions, the axioms in the ontology must be necessary and sufficient to express
the competency questions and to characterize their solutions; without the axioms we cannot
express the question or its solution, and with the axioms we can express the question and its
solutions. Further, any solution to a comptency question must be entailed by or consistent with
the axioms in the ontology alone. If the proposed axioms are insufficient to represent the for-
mal competency questions and characterize the solutions to the questions, then additional
objects or axioms must be added to the ontology until it is sufficient. This development of axi-
oms for the ontology with respect to the competency questions is therefore an iterative process.

There may be many different ways to axiomatize an ontology, but the formal competency ques-
tions are not generating these axioms. Rather, we use them to evaluate the completeness of the
sets of axioms in any particular axiomatization. In this sense, we can compare the expressive-
ness of different sets of axioms using the competency questions. If there is a competency ques-
tion that one set of axioms can represent and another cannot, then the first set is more
expressive. If two different axiomatizations can represent a competency question and charac-
terize its solutions, then they are equivalent with respect to the question, and any comparison
must use other criteria.

•

Completeness Theorems:

 Once the competency questions have been formally stated, we must
define the conditions under which the solutions to the questions are complete. This forms the
basis for completeness theorems for the ontology.

The TOVE Ontology Engineering process addresses the issues raised earlier. Reusability is ad-
dressed by defining a terminology that is generic across many domains. Consistent Usage is ad-
dressed by providing semantics for the terminology in the form of axioms in first-order logic.
Accessibility is addressed by implementing the axioms in Prolog thereby providing a deductive

query processing facility. Lastly, the Selection issue is addressed by providing a way of character-
izing the span of an ontology by what we call competency questions. The ontology must contain a
necessary and sufficient set of axioms to represent and solve these questions. It is in this sense that
we can claim to have, an adequate ontology appropriate for a given task, and it is this rigor that is
lacking in previous approaches to enterprise modelling.

3.0 LOGIC FRAMEWORK: SITUATION CALCULUS

At the core of the TOVE ontology lies a representation of action composed of activity, state, time
and causality. The competency of this ontology is focused primarily on projecting what will be true
in time. That is, given a set of actions that occur at different points in the future, what are the prop-
erties of resources and activities at other points in time. This is also called Temporal Projection and
induces the following set of requirements on the ontologies:

•

Temporal projection requires the evaluation of the truth value of a proposition at some point in
time in the future. We therefore need to define axioms that express how the truth of a proposi-
tion changes over time. In particular, we need to address the frame problem and express the
properties and relations that change or do not change as the result of an activity.

•

We must define the notion of a state of the world, that is, define what is true of the world before
and after performing different activities. This is necessary to express the causal relationship
between the preconditions and effects of an activity.

•

The time period over which the state has a certain status is bounded by the times at which the
appropriate actions that change status occur. This period defines the duration of a state if the
status is enabled. This is essential for the construction of schedules.

•

We want a uniform hierarchical representation for activities (aggregation). Plans and processes
are constructed by combining activities. We must precisely define how activities are combined
to form new ones. The representation of these combined activities should be the same as the
representation of the subactivities. Thus aggregate activities (sets of activities or processes)
should themselves be represented as activities.

•

The causal and temporal structure of states and subactivities of an activity should be explicit in
the representation of the activity.

Within the TOVE project, we have adopted the situation calculus to provide a semantics to our on-
tology of activity and state. The intuition behind the situation calculus is that there is an initial sit-
uation, and that the world changes from one situation to another when actions are performed. There
is a predicate

Poss(a,

σ

)

that is true whenever an action a can be performed in a situation

σ

.

The structure of situations is that of a tree; two different sequences of actions lead to different sit-
uations. Thus, each branch that starts in the initial situation can be understood as a hypothetical
future. The tree structure of the situation calculus shows all possible ways in which the events in
the world can unfold. Therefore, any arbitrary sequence of actions identifies a branch in the tree of
situations.

Further, we impose a structure over situations that is isomorphic to the natural numbers by intro-
ducing the notion of successor situation [Reiter 91]. The function

do(a,

σ

)

 is the name of situation

that results from performing action

a

 in situation

σ

. We also define an initial situation denoted by
the constant

σ

0

.

To define the evaluation of the truth value of a sentence in a situation, we will use the predicate

holds(f,

σ

)

 to represent the fact that some ground literal

f

is true in situation

σ

. A fluent is a predicate
or function whose value may change between situations. Using this predicate we can define state
constraints, which are sentences that must be satisfied in all situations.

One important property that must be represented is the notion of causality, that is, the specification
of what holds in the world after performing some action. As part of the logical specification of the
activity ontology, we define successor axioms that specify how actions change the value of a flu-
ent. These axioms provide a complete characterization of the value of a fluent after performing any
action, so that we can use the solution to the frame problem in [Reiter 91]. Thus if we are given a
set of action occurrences, we can solve the temporal projection problem (determining the value of
a fluent at any time point) by first finding the situation containing that time point, and then using
the successor axioms to evaluate the status of the state in that situation.

Another important notion is to represent the occurrence of actions. The work of [Pinto & Reiter
93] extends the situation calculus by selecting one branch of the situation tree to describe the evo-
lution of the world as it actually unfolds. This is done using the predicate

actual

 defined by the
following axioms:

The initial situation is always actual:

actual(

σ

0

)

(EQ 1)

If a situation is actual, then its immediate predecessor must also be actual:

(

∀

 a

,σ

) actual(do(a,

σ

))

 ⊃

 actual(

σ

)

∧

 Poss(a,

σ

)

(EQ 2)

An actual situation has at most one actual successor situation.

(

∀

 a

1

,

a

2

,σ

) actual(do(a

1

,

σ

))

∧

 actual(do(a

2

,

σ

))

⊃

 a

1

 = a

2

(EQ 3)

Thus, actual defines a line within the situation tree.

To represent occurrences, we then introduce the predicate

occurs(a,

σ

)

 defined as actions per-
formed along the actual line:

occurs(a,

σ

)

≡

 actual(do(a,

σ

))

(EQ 4)

The notion of the actual line and action occurrences plays a crucial role in the representation of
enterprises. We need to express the following class of constraints: suppose that a plan exists that
violates some constraint, but we do not want to allow plans that violate the constraint. How can we
distinguish between this constraint and those that must always be satisfied in order for a plan to
exist? Using the notion of actual line, we can reason about hypothetical branches where we allow
such constraints to be violated, but enforce these constraints on the actual line, so that branches that
violate the constraints cannot be actual. For example, suppose we want to represent the constraint
that no spoiled food is allowed. We cannot represent this as a state constraint which must be satis-
fied in all situations e.g.

(

∀

 r

,σ

) holds(spoiled(r)

,

σ

) (EQ 5)

since there can exist situations where spoilage occurs; however, we do not want spoilage to occur.
Using the notion of actual line, we can represent this as

(

∀

 r

,σ

) actual(

σ

)

⊃

 holds(spoiled(r),

σ

)

(EQ 6)

We can thus represent maintenance and prevention as actual line constraints with universal quan-
tifiers (we will call these universal actual line constraints), and represent goals and deadlines as
actual line constraints with existential quantifiers (which we will call existential actual line con-
straints). For example, we can represent the goal of producing 50 bolts as the following actual line
constraint:

(

∃

 r,q,

σ

) actual(σ) ∧ holds(rp(bolt,50),σ) (EQ 7)

This allows us to reason about hypothetical non-actual situations where the goal is not achieved by
the deadline. This also allows us to formally characterize the conditions which must hold in the
world and actions that must necessarily occur in order to achieve a goal.

4.0 TIME AND ACTION

We represent time as a continuous line; on this line we define time points and time periods (inter-
vals) as the domain of discourse. We define a relation < over time points with the intended inter-
pretation that t < t′ iff t is earlier than t′. One important property that must be represented is the
intuition that some action a occurs and then some action b occurs, and that there is no intervening
event between a and b. Furthermore, we want to define what holds in the world after performing
some action in order to capture the notion of causality. How do we express these notions if we have
a continuous time line? Since situations have duration, they can be defined as a set of distinguished
intervals on the time line; they will be denoted by the letters σ. The following axioms establish the
properties of the relation < over situations:

(∀ a, σ1,σ2) σ1 < do(a,σ2) ≡ σ1 ≤ σ2 (EQ 8)

(∀ a1,a2, σ1) do(a1,σ1) = do(a2,σ1) ⊃ a1 = a2 (EQ 9)

(∀ σ1,σ2) σ1 < σ2 ⊃ ¬ σ2 < σ1 (EQ 10)

(∀ ϕ)[ϕ(σ0) ∧ (∀ σ,a) (ϕ(σ) ⊃ ϕ(do(a, σ))] ⊃ (∀ σ) ϕ(σ) (EQ 11)

This enables us to define the intuition of no intervening events, that is, there is no situation between
a situation and its successor, which is a consequence of the axioms:

(∀ α,σ,σ′) ¬ (σ < σ′ < do(a,σ)) (EQ 12)

Situations are assigned different durations by defining the predicate start(s,t) [Pinto & Reiter 93].
Each situation has a unique start time; these times begin at 0 in σ0 and increase monotonically away
from the initial situation.

(∀ σ) (∃ t) start(σ,t) (EQ 13)

start(σ0,0) (EQ 14)

(∀ σ, t,t′) start(σ,t) ∧ start(σ,t′) ⊃ t = t′ (EQ 15)

(∀ a. σ, t,t′) start(σ,t) ∧ start(do(a,σ),t′) ⊃ t< t′ (EQ 16)

To define the evaluation of the truth value of a sentence at some point in time, we will use the pred-
icate holds(f,σ) to represent the fact that some ground literal f is true in situation σ. Using the as-
signment of time to situations, we define the predicate holdsT(f, t) to represent the fact that some
ground literal f is true at time t. A fluent is a predicate or function whose value may change with
time.

Another important notion is that actions occur at points in time. To represent this we introduce two
predicates, occurs(a,σ) and occursT(a,t), defined as follows:

 occurs(a,σ) ≡ σ0 < do(a,σ) (EQ 17)

occursT(a,t) ≡ occurs(a,σ) ∧ start(do(a, σ), t) (EQ 18)

We will now apply this formalism to the representation of activities in an enterprise.

5.0 ACTIVITIES AND STATES

At the heart of the TOVE Enterprise Model lies the representation of an activity and its correspond-
ing enabling and caused states ([Sathi et al. 85], [Fox et al. 93]). In this section we examine the
notion of states and define how properties of activities are defined in terms of these states. An ac-
tivity is the basic transformational action primitive with which processes and operations can be
represented; it specifies how the world is changed. An enabling state defines what has to be true of
the world in order for the activity to be performed. A caused state defines what is true of the world
once the activity has been completed.

An activity, along with its enabling and caused states, is called an activity cluster. The state tree
linked by an enables relation to an activity specifies what has to be true in order for the activity to
be performed. The state tree linked to an activity by a causes relation defines what is true of the
world once the activity has been completed. Intermediate states of an activity can be defined by
elaborating the aggregate activity into an activity network.

There are two types of states: terminal and non-terminal. In Figure 1, es_fabricate_plug_on_wire
is the nonterminal enabling state for the activity fabricate_plug_on_wire and
pro_fabricate_plug_on_wire is the caused state for the activity. The terminal conjunct substates of
es_fabricate_plug_on_wire are consume_wire, consume_plug, and use_inject_mold since all three
resources must be present for the activity to occur; the terminal states of
pro_fabricate_plug_on_wire are produce_plug_on_wire and release_inject_mold. The activity
assemble2 wire_switch is enabled by the consumption of plug_on_wire (consume plug_on_wire)
and the use of an assembly area (use asmbly_area); this is represented by the nonterminal state
es2_assemble_wire_switch. This activity causes the production of wire_switch (produce
wire_switch) and the release of the used resource (release asmbly_area); this is represented by the
nonterminal state pro2_assemble_wire_switch.

In TOVE there are four terminal states represented by the following predicates:use(s,a), con-
sume(s,a), release(s,a), produce(s,a). These predicates relate the state with the resource required
by the activity. Intuitively, a resource is used and released by an activity if none of the properties
of a resource are changed when the activity is successfully terminated and the resource is released.
A resource is consumed or produced if some property of the resource is changed after termination
of the activity; this includes the existence and quantity of the resource, or some arbitrary property
such as color. Thus consume(s,a) signifies that a resource is to be used up by the activity and will
not exist once the activity is completed, and produce(s,a) signifies that a resource, that did not exist
prior to the performance of the activity, has been created by the activity. We define use and con-
sume states to be enabling states since the preconditions for activities refer to the properties of
these states, while we define release and produce states to be caused states, since their properties
are the result of the activity.

Terminal states are also used to represent the amount of a resource that is required for a state to be
enabled. For this purpose, the predicate quantity(s,r,q) is introduced, where s is a state, r is the as-
sociated resource, and q is the amount of resource r that is required. Thus if s is a consume state,
then q is the amount of resource consumed by the activity, if s is a use state, then q is the amount
of resource used by the activity, and if s is a produce state, then q is the amount of resource pro-
duced.

In this section, we formalize the relationship between states and activities. First we examine the
notion that an activity specifies a transformation on the world; this requires that we introduce flu-
ents for states and activities, and the actions that change these fluents. The axioms presented ade-
quate for solving the temporal projection problem for these properties of states and activities.

To formalize the notions of nonterminal states and aggregate activities, we introduce occurrence
axioms for a set of actions.

5.1 Successor Axioms for Status of Terminal States

The primary fluents we will consider are the values assigned to states to capture the notion of the
status of a state. We define a new sort for the domain of the status with the following set of con-
stants:{possible, committed, enabled, completed, disenabled, reenabled}. The status of a state is
changed by one of the following actions:commit(s,a), enable(s,a), complete(s,a), disenable(s,a),
reenable(s,a). Note that these actions are parametrized by the state and the associated activity.

The next step is to define the successor axioms that specify how the above actions change the status
of a state. These axioms provide a complete characterization of the value of a fluent after perform-
ing any action, so that we can use the solution to the frame problem in [Reiter 91]. Thus if we are
given a set of action occurrences, we can solve the temporal projection problem (determining the
value of a fluent at any point in time) by first finding the situation containing that time point, and
then using the successor axioms to evaluate the status of the state in that situation.

The status of a state is committed in a situation iff either a commit action occurred in the preceding
situation, or the state was already committed and an enable action did not occur.

(∀ s,a,e, σ) holds(status(s,a, committed), do(e, σ)) ≡ (e= commit(s,a) ∧ holds(status(s,a,possible),
σ)) ∨ ¬(e=enable(s,a)) ∧ holds(status(s,a, committed), σ) (EQ 19)

The status of a state is enabled in a situation iff either an enable action occurred in the preceding
situation, or the state was already committed and a complete action or disenable action did not oc-
cur.

(∀ s,a,e, σ) holds(status(s,a, enabled), do(e, σ)) ≡ (e= enable(s,a) ∧ holds(status(s,a,committed),
σ)) ∨ ¬[(e=complete(s,a) ∨ e=disenable(s,a)) ∧ holds(status(s,a, enabled), σ)] (EQ 20)

The status of a state is completed in a situation iff either a complete action occurred in the preced-
ing situation, or the state was already completed.

(∀ s,a,e, σ) holds(status(s,a, completed), do(e, σ)) ≡ [e= complete(s,a) ∧
(holds(status(s,a,enabled), σ) ∨ holds(status (s,a,reenabled),σ))] ∨ holds(status(s,a, completed),

σ) (EQ 21)

The status of a state is disenabled in a situation iff either a disenable action occurred in the preced-
ing situation, or the state was already disenabled and a reenable action did not occur.

(∀ s,a,e, σ) holds(status(s,a, disenabled), do(e, σ)) ≡ [e= disenable(s,a) ∧
(holds(status(s,a,enabled), σ) ∨ holds(status (s,a,reenabled),σ))] ∨ ¬ (e=reenable(s,a)) ∧

holds(status(s,a, disenabled), σ) (EQ 22)

The status of a state is reenabled in a situation iff either a reenable action occurred in the preceding
situation, or the state was already reenabled and a complete action or disenable action did not oc-
cur.

(∀ s,a,e, σ) holds(status(s,a, reeenabled), do(e, σ)) ≡ (e= reeenable(s,a) ∧
holds(status(s,a,disenabled), σ)) ∨ ¬(e=complete(s,a) ∨ e=disenable(s,a)) ∧ holds(status(s,a,

reenabled), σ) (EQ 23)

Note that in each of these axioms we also specify the precondition for the action. These precondi-
tions can equivalently be expressed as the following occurrence axioms:

(∀ s,a, σ) occurs(commit(s,a), σ) ⊃ holds(status(s,a,possible), σ) (EQ 24)

(∀ s,a, σ) occurs(enable(s,a), σ) ⊃ holds(status(s,a,committed), σ) (EQ 25)

(∀ s,a, σ) occurs(complete(s,a), σ) ⊃ (holds(status(s,a,enabled), σ) ∨
holds(status(s,a,reenabled), σ)) (EQ 26)

(∀ s,a, σ) occurs(disenable(s,a), σ) ⊃ (holds(status(s,a,enabled), σ) ∨
holds(status(s,a,reenabled), σ)) (EQ 27)

(∀ s,a, σ) occurs(reenable(s,a), σ) ⊃ holds(status(s,a,disenabled), σ) (EQ 28)

How are these incorporated into the activity-state clusters, which only represent the causal rela-
tionships among states and activities? The occurrence of a commit action is not explicitly given in
the specification of an activity. However, since the status fluents can only be changed by the above
set of actions, the following sentences can be derived from the axioms:

(∀ s,a, σ) occurs(enable(s,a), σ) ⊃ (∃σ′) occurs(commit(s,a), σ′) (EQ 29)

(∀ s,a, σ) occurs(complete(s,a), σ) ⊃ (∃σ′) (occurs(enable(s,a), σ′) ∨ occurs(reenable(s,a), σ′))(EQ 30)

(∀ s,a, σ) occurs(disenable(s,a), σ) ⊃ (∃σ′) (occurs(enable(s,a), σ′) ∨
occurs(reenable(s,a), σ′)) (EQ 31)

(∀ s,a, σ) occurs(reenable(s,a), σ) ⊃ (∃σ′) occurs(disenable(s,a), σ′) (EQ 32)

Similarly, the precondition for the commit action is that the state be possible. In [Fadel 94] it is
shown how the possible status is defined in terms of the availability of a resource for the activity.
This includes the configuration or setup of a resource as well as capacity constraints for the con-
current execution of activities with a shared resource. Axioms similar to those above would be used
to express the occurrence of the appropriate setup activities for some activity. This is necessary for
formalizing time-based competition, where the occurrence of setup activities is minimized.

5.2 Status of Non-Terminal States

In TOVE, non-terminal states enable the boolean combination of states. We will consider four non-
terminal states: conjunctive, disjunctive, exclusive, not. What precisely does it mean for a non-ter-
minal state to be a boolean combination of states? For example, how do we define the status of a
non-terminal state given the status of each substate? To define this notion, we must refer to the oc-
currence of the actions that change the status of the states.

Disjunctive states are used to formalize the intuition of a resource pool. We may have a set of re-
sources, such as machines or operators, that can possibly be used by an activity. The activity only
requires one of these resources, so the activity only needs to nondeterministically choose one of
the alternative resources in the pool. Thus, the status of the disjunctive state changes if one of the
resources has been selected and its status has been changed. For example, we have

(∀ s,s1,...,sn,a, σ) disjunctive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ) ≡
occurs(enable(s1,a), σ) ∨ ... ∨ occurs(enable(sn,a), σ) (EQ 33)

The successor axioms for the other values of status are defined in the same way. In other words,
the occurrence of an action for a disjunctive state is equivalent to a disjunctive sentence of occur-
rence literals for each disjunct substate.

Similarly, we have the following constraints on conjunctive states:

(∀ s,s1,...,sn,a, σ) conjunctive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ)
≡ occurs(enable(s1,a), σ)∧ ...∧ occurs(enable(sn,a), σ) (EQ 34)

The occurrence of an action for a conjunctive state is equivalent to a conjunctive sentence of oc-
currence literals for each conjunct substate. Note that we make the assumption that all conjunct
substates change their status at the same time.

For exclusive states we have constraints of the form

(∀ s,s1,...,sn,a, σ) exclusive(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ occurs(enable(s,a), σ) ≡
occurs(enable(s1,a),σ) ∨ ... ∨ occurs(enable(sn,a), σ) (EQ 35)

(∀ s,si,sj,a, σ) exclusive(s,a) ∧ substate(si,s) ∧ substate(sj,s) ∧ occurs(enable(s,a), σ)⊃
(occurs(enable(si,a), σ) ≡ ¬occurs(enable(sj,a), σ) (EQ 36)

so that the occurrence of an action for an exclusive state is equivalent to the occurrence of the ac-

tion for exactly one of the substates.

For not states we have the constraint that the action for the substate does not occur when the action
for the nonterminal state occurs:

(∀ s,s1,a, σ) not(s,a) ∧ substate(s1,s) ⊃ occurs(enable(s,a), σ) ≡ ¬ occurs(enable(s1,a),
σ) (EQ 37)

In this way we can define arbitrary nonterminal states as occurrence axioms.

5.3 Status of Activities

Just as status was defined for states, we can define the status of an activity. We define a new sort
for the domain of the status of an activity with the following set of constants:{ dormant, executing,
suspended, reExecuting, terminated }. The status of an activity is determined by the status of its
enabling and caused states.

An activity is dormant iff its enabling state is committed. In this case, the resources associated with
the state are committed but not yet enabled.

(∀ a,s, σ) enabling(s,a) ⊃ holds(status(a, dormant), σ) ≡ holds(status(s,a,committed), σ) (EQ 38)

An activity is executing iff either its enabling or caused state is enabled.

(∀ a, σ) holds(status(a, executing), σ) ≡(∃ s) (enabling(s,a) ∨ caused(s,a)) ∧ holds(status(s,a,
enabled), σ) (EQ 39)

An activity is suspended iff its enabling and caused states are disenabled.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃holds(status(a, suspended), σ) ≡ holds(status(s,a,
disenabled), σ) (EQ 40)

An activity is reexecuting iff its enabling and caused states are reenabled.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃holds(status(a, reExecuting), σ) ≡ holds(status(s,a,
reenabled), σ) (EQ 41)

An activity is terminated iff its enabling and caused states are completed.

(∀ a,s, σ) (enabling(s,a) ∨ caused(s,a)) ⊃ holds(status(a, terminated), σ) ≡
holds(status(s,a,completed), σ) (EQ 42)

5.4 Duration

By combining the ontology of time with the ontology of states of activities, we arrive at the notion
of duration, which is essential for scheduling and the analysis of activities in time-based competi-
tion. The duration of a state is defined as the time period beginning at the time that the state is en-
abled and ending at the time that the state is completed. Similarly, the duration of an activity is
defined as the time period beginning at the time that activity begins the status of executing and end-
ing at the time that the activity begins the status of terminated. The duration of a state is represented
by the predicate state_duration(s,d), while the duration of an activity is represented by the predi-
cate activity_duration(a,d). In the representation of an activity, the duration of a state satisfies the

occurrence axiom

(∀ a,s,t,t′,d) state_duration(s,d) ≡ occursT(enable(s,a), t) ∧ occursT(complete(s,a), t′) ∧ d = t -t′(EQ 43)

We can also define intervals for the remaining status values, such as committed:

(∀ a,s,t,t′,d) committed_duration(s,d) ≡ occursT(commit(s,a), t) ∧ occursT(complete(s,a), t′) ∧ d =
t -t′ (EQ 44)

In [Fadel 94], the committed duration is necessary to schedule the availability of a resource for a
set of activities over some time interval. The resource must have sufficient capacity to support each
activity at every time point in the interval and the resource may not be available to one activity if
it is committed to other activities .

5.5 Aggregation of Activities

An important requirement for an ontology for activities is the ability to aggregate a set of activities
to form a new activity. Activity clusters may be also aggregated to form multiple levels of abstrac-
tion. An activity is elaborated to an aggregate activity (an activity network), which then has activ-
ities [Sathi, et al. 85]. These activities are subactivities of the aggregate activity. We introduce the
predicate subactivity(a,a′) to denote that activity a′ is a subactivity of activity a. For example, con-
sider the activity clusters in Figure 1; the activities fabricate plug_on_wire and assemble2
wire_switch are sub-activities of assemble_ws aggregation. The states es_fabricate plug_on_wire
and es2_assemble wire_switch are substates of enable_ws aggregation, and the states
pro_fabricate plug_on_wire and pro_assemble wire_switch are substates of pro_ws_aggregation.

To completely specify an aggregate activity, we must define the temporal relations over its subac-
tivities and the states of the subactivities. Indeed, the definition of status for activities allows to rep-
resent the temporal structure of an aggregate activity in terms of the enabling and caused states of
each subactivity; we do this using occurrence axioms.

Essentially, the representation of an activity consists of a sequence of actions that commit, enable,
and complete states. These actions may be partially ordered; once the actions in an activity have
been totally ordered, we then assign times to the situations in which the actions occur. Thus activ-
ities will be represented by an occurrence axiom of the form:

(∀ a, s,s1,...,sn,σ) enabling(s,a) ∧ substate(s1,s) ∧ ... ∧ substate(sn,s) ⊃ [occurs(enable(s,a),σ) ⊃
(∃ σ1,...,σn,t1,...tn) occurs(enable(s1,a), σ1) ∧... ∧ occurs(enable(sk,a), σi)

∧occurs(complete(s1,a), σi+1) ∧ ... ∧ occurs(complete(sk,a), σn) ∧ occursT(enable(s1,a), t1) ∧ ... ∧
occursT(enable(sk,a), ti) ∧ occursT(complete(s1,a), ti+1) ∧ ... ∧ occursT(complete(sn,a), tn)](EQ 45)

Note that this specification of the activity does not place any constraints on the ordering over the
situations and times in which the actions occur. The complete specification of the aggregation of a
set of arbitrary activities would impose a total ordering over the occurrences. In general, this is a
scheduling problem which remains for future work.

FIGURE 1. Activity Cluster

6.0 Spoilage Axioms

In preparation for the example queries in the next section, we introduce an additional set of axioms
that define simple theory of resource spoilage, The representation and reasoning about spoilage is
important in food domains where inventory must be moved prior to its spoilage date. We begin by
introducing the notion that once a resource is produced, and given a limited shelf life, the resource
will be spoiled unless somthing else makes that impossible:

 OccursT(terminate(a),t) ∧ produces(a,r) ∧ shelf_life(r,d) ∧ PossT(spoilage(r), t+d) ⊃
OccursT(spoilage(r),t+d) (EQ 46)

The possibility that the resource can spoil is determined by the precondition axiom that states that
as long as the quantity is greater than 0, e.g., it has not been shipped to a customer, then it can spoil:

poss(spoilage(r), s) ≡ holds(rp(r,q),s) ∧ q>0 (EQ 47)

The following are additional axioms to complete the set. Successor axiom for the fluent spoiled:

(∀ a, r, s) holds(spoiled(r), do(a,s)) ≡ ((¬holds(spoiled(r), s) ∧ a=spoilage(r)) ∨ holds(spoiled(r),
s)) (EQ 48)

quantity(s,r,q) ∧ enables(s,a) ⊃ (Poss(a, s) ⊃ ¬holds(spoiled(r), s)) (EQ 49)

assemble1
wire_switch

es1_assemble
wire_switch

pro1_assemble
wire_switch

produce_ws
aggregation

assemble_ws
aggregation

consume
wire

use
inject_mold

produce
plug_on_wire

release
inject_mold

use
asmbly_area

pro2_assemble
wire_switch

consume
plug_on_wire

release
asmbly_area

produce
wire_switch

v

es_fabricate
plug_on_wire

enables

enables enables

causes

causes causes

next_activity

enable_ws
aggregation

fabricate
plug_on_wire

pro_fabricate
plug_on_wire

es2_assemble
wire_switch

assemble2
wire_switch

same same

same ends*

ends*ends*

ends* - All time relations in this diagram illustrates how a state’s time interval is related to that of an
activity’s time interval. Therefore, <activity> does not end <state>, <state> ends <activity>.

has_subactivitysub-states

conjunct conjunct conjunctconjunct

elaboration_ofelaboration_ofelaboration_of

sub-states

before

temporal relation activity-state relation

consume
plug

wire plug inject_mold plug_on_wire asmbly_area wire_switch

7.0 Example Queries

The following are examples of queries whose answers are deduced using an initial set of assertions,
the axioms presented above and other axioms, such as activity-based costing axioms, that are not
presented here. The english version of the query is given in italics, followed by its prolog specifi-
cation and the answered returned.

What is the status of the state "pro_clip_base" at times 13 and 17?

:- HoldsT(status(pro_clip_base, X), 13).

X = enabled.

:- HoldsT(status(assemble_clip_base, X), 17).

X = completed.

Determine how much of round_nut1 exists at time 7.

:- holdsT(rp(round_nut1, Q), 7).

Q = 20.

rp, which stands for resource point, specifies the quantity of a resource that exists.

What is the available capacity of clip_base resource at time tp1?

:- available_capacity(clip_base, tp1, Amount, Unit).

Amount = 12

Unit = object;

How many clip_base’s are committed at time point tp1?

:- total_committed(clip_base, Amount, tp1, object).

Amount = 2;

total_committed specifies the quantity of a resource that is committed to activities.

Will shipment10 of oranges spoil if they are not shipped before Friday?

:- holdsT(spoiled(shipment10), T), T < friday.

no;

Is any milk spoiled by Wednesday?

:- holdsT(spoiled(milk), wednesday).

yes;

Is there any time at which the stock level for bolts at the Scarborough factory reaches the minimum
safety level?

:- holdsT(stock_status(bolt1, Scarborough, minimum), T).

no;

What is the total cost for order O1?

:- holdsT(cpo(O1,C), 25).

C = 15;

cpo is a function that returns the cost of an order.

How much of the cost for assemble_clip_reading_lamp is due to machine breakdown?

:-holdsT(suspend_act_cost(assemble_clip_reading_lamp, C), 17).

C = 5;

susspend_act_cost returns the portion of the cost of an activity due to its being suspended.

How much of the cost for assemble_clip_reading_lamp associated with the resource bolt is due to
idleness before the activity begins executing?

:- holdsT(committed_res_cost(bolt1, assemble_clip_reading_lamp,C), 10).

C = 15;

commited_res_cost returns the cost of committing a resource to an activity.

8.0 SUMMARY

In this paper, we presented a logical formalization of the TOVE ontology of activity and time that
has been designed to specify the tasks that arise in integrated supply chain management and enter-
prise engineering. To this end, we have defined the TOVE ontologies for activities, states, and time
within first-order logic. This formalization allows deduction of properties of activities and states
at different points in time by formalizing how these properties do or do not change as the result of
an activity (temporal projection). The representation of aggregatete activities, and the role of tem-
poral structure in this aggregation, is accomplished through axioms that allow us to reason about
the occurrence of actions. We have also shown an extension of the ontology to cover spoilage and
given examples of the ontologies deductive query support when implemented in prolog.

The ontologies for activities, states, and time defined in this paper have been implemented on top
of C++ using the ROCK knowledge representation tool from Carnegie Group. The successor state
axioms and occurrence axioms have been implemented using Quintus Prolog. The formalization
of activities is being extended to handle concurrent activities, reasoning about the availability and
capacity of resources, and activity-based costing.

The benefits of our approach to enterprise modelling include:

• Providing a shareable, reusable representation

• Providing a deductive database able to deduce anwers to common sense questions thereby
reducing the need for ad hoc report generators and interfaces

• Providing a standard for visualizing enterprise knowledge

• Providing a formal representation of meaning!

9.0 ACKNOWLEDGEMENTS

This research is supported, in part, by the Natural Science and Engineering Research Council of
Canada, Carnegie Group Inc., Digital Equipment Corp., Micro Electronics and Computer Research
Center, Quintus Corp., and Spar Aerospace. An earlier draft of this paper appeared in the proceed-
ings of the IFIP WG 5.12 workshop on Enterprise Modelling and the Proceedings of the British
Computer Society’s 1995 Expert Systems Conference.

10.0 REFERENCES

[Blackburn 91] Blackburn J. Time-based Competition. Business One Irwin, 1991.

[Davenport 93] Davenport, T.H. Process Innovation: Reengineering Work through Information
Technology. Harvard Business School Press, 1993.

[Davis et al. 83] Davis, B.R., Smith, S., Davies, M., and St. John, W. Integrated Computer-aided
Manufacturing (ICAM) Architecture Part III/Volume III: Composite Function Model of "Design
Product" (DES0). Technical Report AFWAL-TR-82-4063 Volume III, Materials Laboratory, Air
Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air
Force Base, Ohio 45433, 1983.

[Fadel 94] Fadel, F. Resource Ontology for Enterprise Modelling. M.A.Sc. thesis, Department of
Industrial Engineering, University of Toronto.

[Fadel et al. 94] Fadel, F., Fox, M.S., and Gruninger, M. A resource ontology for enterprise mod-
elling. Third Workshop on Enabling Technologies-Infrastructures for Collaborative Enterpris-
es,(West Virginia University 1994), pp. 117-128.

[Fox et al. 93] Fox, M.S., Chionglo, J., Fadel, F. A Common-Sense Model of the Enterprise, Pro-
ceedings of the Industrial Engineering Research Conference 1993, pp. 425-429.

[Fox et al. 94] Fox, M. S., Gruninger, M., Zhan, Y.. Enterprise engineering: An information sys-
tems perspectiveProceedings of the Industrial Engineering Research Conference 1994, pp. 461-
466.

[Fox et al. 95] Fox, M.S., Barbuceanu, M., Gruninger, M. An Organisation Ontology for Enter-
prise Modelling: Preliminary Concepts for Linking Structure and Behaviour, Fourth Workshop on
Enabling Technologies-Infrastructures for Collaborative Enterprises,(West Virginia University
1995).

[Gruber 93] Gruber, Thomas R., Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, KSL 93-4, Computer Science Department, Stanford University, 1993.

[Gruninger & Fox 94] Gruninger, M., and Fox, M.S., The Role of Competency Questions in En-
terprise Engineering ,Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and
Practice, Trondheim, Norway. June 1994.

[Hammer & Champy 93] Hammer, M. and Champy J. Reengineering the Corporation. Harper
Business, 1993.

[Jorysz & Vernadat 90a] Jorysz, H.R. and Vernadat, F.B. , CIM-OSA Part 1: total enterprise

modelling and function view, International Journal of Computer Integrated Manufacturing, 1990,
Vol. 3, Nos. 3 and 4, pp. 144 - 156.

[Jorysz & Vernadat 90b]Jorysz, H.R. and Vernadat , CIM-OSA Part 2: information view, Inter-
national Journal of Computer Integrated Manufacturing, 1990, Vol. 3, Nos. 3 and 4, pp. 157 - 167.

[Klittich 90] Klittich, M., CIM-OSA Part 3: CIM-OSA integrating infrastructure - the operational
basis for integrated manufacturing systems, International Journal of Computer Integrated Manu-
facturing, 1990, Vol. 3, Nos. 3 and 4, pp. 168 - 180.

[Kim & Fox 94] Kim, H., and Fox, M.S., "Formal Models of Quality and ISO9000 Compliance:
An Information Systems Approach", Proceedings of the 48th Annual Quality Congress, Milwau-
kee WI: American Society for Quality Control, pp. 17-23, 1994.

[Kim & Fox 95] Kim, H. and Fox, M.S. An Ontology of Quality for Enterprise Modelling, Fourth
Workshop on Enabling Technologies-Infrastructures for Collaborative Enterprises, (West Virgin-
ia University 1995).

[Lenat & Guha 90] Lenat, D. and Guha, R.V. Building Large Knowledge-based Systems: Repre-
sentation and Inference in the CYC Project. Addison Wesley, 1990.

[Martin & Smith 83] Martin, C., and Smith, S. Integrated Computer-aided Manufacturing
(ICAM) Architecture Part III/Volume IV: Composite Information Model of “Design Product”
(DES1). Technical Report AFWAL-TR-82-4063 Volume IV, Materials Laboratory, Air Force
Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force
Base, Ohio 45433, 1983.

[Martin et al. 83] Martin, C., Nowlin, A., St. John, W., Smith, S., Ruegsegger, T., and Small, A.
Integrated Computer-aided Manufacturing (ICAM) Architecture Part III/Volume VI: Composite
Information Model of "Manufacture Product" (MFG1). Technical Report AFWAL-TR-82-4063
Voluem VI, Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Sys-
tems Command, Wright-Patterson Air Force Base, Ohio 45433, 1983.

[Pinto & Reiter 93] Pinto, J. and Reiter, R. Temporal reasoning in logic programming: A case for
the situation calculus. In Proceedings of the Tenth International Conference on Logic Program-
ming (Budapest, June 1993).

[Reiter 91] Reiter, R. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy. Academic Press, San Diego, 1991.

[Sathi et al. 85] Sathi, A., Fox, M.S., and Greenberg, M. Representation of activity knowledge for
project management. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-
7:531-552, September, 1985.

[Tham et al. 94] Tham, D., Fox, M.S., and Gruninger, M., A cost ontology for enterprise model-
ling Third Workshop on Enabling Technologies-Infrastructures for Collaborative Enterprises,
(West Virginia University 1994).

PostScript error (--nostringval--, findresource)

