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it is shown that the class of models of RT−EC is isomorphic to the non-distributive
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1. Introduction

Within AI and in particular Knowledge Representation (KR), region-based the-
ories of space have been a prominent area of research in the recent years. Tradi-
tionally, space has been considered in mathematics as point-based theories such
as geometric (e.g. Euclidean geometry) or topological representations (point-
set topology) of space. Points are somewhat tricky to define and are far from
intuitive in real-world applications. Instead, point-free theories of space such as
region-based theories can be used to represent space in the context of (quali-
tative) spatial reasoning. Using regions instead of points as smallest units ac-
counts more naturally for how humans conceptualize our physical world. Such
commonsense spatial reasoning reflects rigid bodies or spatial regions more nat-
urally than conventional, point-based models [17, 26]. Since the earliest work
of de Laguna [11] and Whitehead [31], mereotopology has been considered for
building point-free theories of space. In AI, these theories are of importance
for qualitative spatial reasoning (QSR): they focus on simple properties that
abstract from quantitative measurements while still being powerful enough to
reason about spatial configurations and extract useful spatial knowledge, e.g.
about bordering regions, intersecting regions, or the composition of regions.
Mereotopology has the potential to allow human-like commonsense reasoning
about space.

Mereotopology is in general a composition of topological (from Greek topos,
“place”) notions of connectedness with mereological (from Greek méros, “part”)
notions of parthood. Neither topology nor mereology are by themselves powerful
enough to express part-whole relations.

Topology can also be seen as a theory of wholeness, but has no means of ex-
pressing parthood relations. Connection does not imply a parthood relation
between two individuals, as well as disconnection does not prevent parthood.
Just consider the example of countries - there exist many countries, e.g. the
United States, that are not self-connected. Alaska should be considered part of
the United States but is by no intuitive means connected to the other states.
The same applies for Hawaii, although the kind of separation is different here:
Alaska is separated by Canada from the continental US, whereas Hawaii is solely
separated by the Pacific ocean. If we consider landmass only, then Alaska and
the continental US are part of a self-connected individual, namely continental
North America, whereas Hawaii is separated from this landmass.

On the other hand mereology is not powerful enough to reason about connect-
edness. As the previous example shows, two individuals being part of a common
individual does not imply that this sum is self-connected. Hence, parthood is
not sufficient to model connectedness.

Consequently, to be able to reason about self-connected individuals, ways to
combine mereology with topology are necessary. Previously, Casati and Varzi
[7] classified mereotopologies by the way how the two independent theories are
merged. For a general overview of mereotopology we refer to []
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A second approach for merging mereology and topology is the reverse of the
previous: taking topology as basis and defining mereology on top of it reusing
the topological primitives, which assumes a greater generality of topology than
mereology. Whitehead in Process and Reality [31] and De Laguna were the
first to use this paradigm. Today, it is the most widespread approach: Clarke
choose it for his Calculus of Individuals [8], and all the work based on Clarke
inherited his assumptions, e.g. the system RT0 of Asher and Vieu [1], the
Region Connection Calculus (RCC) [2, 10, 23], Gotts theory [16], and Pratt
and Schoop’s polygonal mereotopology [22]. Due to the same origin all of these
works use a single primitive of connectedness (or contact) and express parthood
in terms of connection which limits the expressiveness. The RCC is a more
simplified framework compared to [8], and [1]: it does not distinguish individuals
from their interiors and closures. The authors argue that such a distinction is
unnecessary for spatial reasoning aspects. But surprisingly they still distinguish
tangential and non-tangential parts as well as overlap and external connection.

Compared to the RCC the system of Asher and Vieu [1] focuses on a larger set
of regions. The standard models of RCC are made of regular closed sets only
whereas the standard models of RT0 contain regions with regular closed closures
and regular open interiors. Therefore, the system RT0 can be seen as a more
general approach in the following sense. The closed elements in Asher and Vieu’s
theory correspond to the elements in RCC. It is, therefore, not very surprising
that RT0 does not provide the same algebraic structure as RCC models, i.e.
Boolean algebras. Even though we will consider distributivity in Section 6 this
is a very particular case. By requiring this property one basically forces the
more general elements of Asher and Vieu, i.e. open, closed and other sets, into
the framework of regular closed regions. It turns out that in this - and just in
this - case the contact relation collapses to overlap similar to Clarke’s original
system. A more detailed study of the relationship between RCC models and
the current framework via the skeleton can be found in [30].

Most mereotopologies are described in terms of first-order axioms. However,
many of them lack soundness and completeness proofs [6, 9, 25]. But even
soundness and completeness proofs are insufficient, we aim for representation
theorems up to isomorphism (“full duality” in the tradition of Stone’s repre-
sentation theorem of Boolean algebras [27], see also e.g. [12, 13, 24, 28]) that
describe the models in a uniform, mathematically well-understood formalism.
Among others the RCC [10, 23] and the framework of Pratt and Schoop [22],
which is limited to planar polygonal mereotopology, provide formal proofs that
actually give insight into the possible models. But to better understand the
relation between different mereotopologies, we need to identify the models of
the mereotopologies and compare them to each other. Algebraic concepts and
relation algebras in particular provide a mathematical sound foundation for com-
paring various mereotopological theories. Most previous work in this direction
focused on the RCC, generalisations and algebraic and topological representa-
tions thereof. Clarke’s theory has also been characterized in terms of algebras,
see [3]. Another approach relates mereotopologies with certain lattice structures.

3



In particular, Stell shows in [26] that models of the RCC are isomorphic to so-
called Boolean connection algebras (or Boolean contact algebras), i.e. Boolean
algebras together with a binary contact relation C satisfying certain axioms.
Since lattices and Boolean algebras in particular are well-known mathematical
structures, this approach led to an intensive study of the properties of the RCC
including several topological representation theorems [12, 13, 14, 24, 28]. In this
paper we want to apply a similar method to the mereotopology RT0 of Asher
and Vieu [1]. We will show that the subtheory RT− can be expressed by a
certain class of lattices. Subsequently, we investigate the additional axioms of
RT−EC and RT in terms of algebraic properties. This relationship between mod-
els of RT0 and certain lattices is the main contribution of this paper. It can be
seen as the start of a lattice-theoretic treatment of RT0 in a similar way as [26].
The next step in this endeavor can be found in [30]. Another interesting result
is Corollary 7.3 showing that the original axiom system is not independent.

2. The Mereotopology RT0

The mereotopology RT0 proposed by Asher and Vieu [1] evolved from Clarke’s
theory, addressing some of its shortcomings. RT0 follows the strategy “Topology
as Basis for Mereology” for defining mereotopology and hence does not contain
an explicit mereology. Consequently, the parthood relation P is sufficiently
defined by the extension of the primitive relation C, which limits the expres-
siveness of the whole theory to that of C. For consequences of such kind of
axiomatization, see [7, 29]. As a indirect consequence of our work, it will turn
out that we could express the whole theory also only in terms of the partial
order of the lattice representation which amounts to specifying the relations P
and O to describe a unique model.

2.1. The first-order theory

The first-order theory RT0 of Asher and Vieu [1] is based on a binary contact
relation C as primitive. The following axioms (and definitions) define the theory
RT0:

(A1) ∀x[C(x, x)] (C reflexive)

(A2) ∀x, y[C(x, y) → C(y, x)] (C symmetric)

(A3) ∀x, y[∀z(C(z, x) ↔ C(z, y)) → x = y] (C extensional)

(A4) ∃x∀y[C(x, y)] (Existence of a unique universally connected element 1)

(A5) ∀x, y∃z∀u[C(u, z) ↔ (C(u, x)∨C(u, y))] (Existence of a unique sum x∪ y
for every x and y)

(D1) P (x, y) ≡def ∀z[C(z, x) → C(z, y)] (Parthood)

(D3) O(x, y) ≡def ∃z[P (z, x) ∧ P (z, y)] (Overlap)
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(A6) ∀x, y[O(x, y) → ∃z∀u[C(u, z) ↔ ∃v(P (v, x)∧P (v, y)∧C(v, u))]] (Existence
of a unique intersection x ∩ y for overlapping elements x and y)

(A7) ∀x[∃y[¬C(y, x)] → ∃z∀u[C(u, z) ↔ ∃v(¬C(v, x) ∧ C(v, u))]] (Existence of
a unique complements −x for elements x 6= 1)

(D4) EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) (External connection)

(D6) NTP (x, y) ≡def P (x, y)∧¬∃z[EC(z, x)∧EC(z, y)]) (Non-tangential part-
hood)

(A8) ∀x∃z∀u[C(u, z) ↔ ∃v(NTP (v, x)∧C(v, u))] (Existence of a unique interior
i(x) for every x)

(D7) c(x) ≡def −i(−x) (Closure operation)

(A9) c(1) = 1 (Closure as a total function)

(D8) OP (x) ≡def x = i(x) (Open individuals)

(A10) ∀x, y[(OP (x) ∧ OP (y) ∧ O(x, y)) → OP (x ∩ y)] (Intersection of open
individuals is open)

(A11) ∃x, y[EC(x, y)] (Existence of two externally connected elements)

(D11) WCont(x, y) ≡def ¬C(c(x), c(y)) ∧ ∀z[(P (x, z) ∧ OP (z)) → C(c(z), y)]
(Weak contact)

(A12) ∃x, y[WCont(x, y)] (Existence of two weakly connected elements)

(A13) ∀x∃y[P (x, y) ∧ OP (y) ∧ ∀z((P (x, z) ∧ OP (z)) → P (y, z))] (Existence of
a smallest open neighborhood n(x) for every x)

Notice that the elements implied by the axioms (A4)-(A8), (A13) are indeed
unique which follows immediately from (A3). In this paper we have chosen a
different notation than Asher and Vieu [1] for those elements since the original
notations may be confused with operations of p-ortholattices. However, we
adapted the number system for definitions from the original paper but just
listed those that are needed to define the theory.

In the following we will consider subtheories of RT0 as illustrated in Figure 1.
RT will denote theory RT0\{(A13)}, RT− the theory RT0\{(A11), (A12), (A13)}
and RT−EC the theory RT0 \ {(A12), (A13)}. Notice that this is a change to the
previous naming of the subtheories as used in [20]. We exclude now axiom A13
from all of the subtheories, since it prevents dense models.

In the following lemma we have summarized some basic properties of models of
RT− which are theorems of the theory RT−.

Lemma 2.1. The theory RT− entails the following theorems.

1. ∀x[x 6= 1 → ¬C(x,−x)].
2. ∀x[x 6= 1 → −x 6= 1].
3. ∀x[x 6= 1 → x ∪ −x = 1].
4. ∀x, y[O(x, y) → C(x, y)].
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Figure 1: RT0 and its subtheories.

5. ∀x, y[P (x, y) → O(x, y)].
6. ∀x[P (i(x), x)].
7. ∀x, y[(NTP (x, y) ∧ P (y, z)) → NTP (x, z)].
8. ∀x, y[P (x, y) → P (i(x), i(y))].
9. ∀x, y[O(x, y) ↔ O(i(x), i(y))].

10. ∀x[x 6= 1 → ¬O(c(x),−x)].

Proof. 1. Assume C(x,−x). Then there is a v with ¬C(v, x) and C(v, x) by
(A7), a contradiction.

2. −x = 1 implies C(x,−x) by (A4), a contradiction to 1.
3. Suppose ¬C(u, x). Then C(u,−x) by (A7) since C(u, u) by (A1). (A5)

implies that x ∪−x is in contact to every element, and, hence, x ∪−x = 1
by (A3).

4. Suppose O(x, y), i.e. there is an elements v with P (v, x) and P (v, y). By
(A1) and (D1) (for P (v, x)) we conclude C(v, x). Applying (D1) (now for
P (v, y)) again we obtain C(x, y).

5. Suppose P (x, y). P (x, x) always holds from (D1). Then there exists a z so
that P (z, x) and P (z, y), namely z = x. Then by (D3) O(x, y).

6. Suppose C(u, i(x)). Then there is v with NTP (v, x) and C(v, u). By (D6)
we get P (v, x), and, hence, C(u, x). This shows P (i(x), x).

7. Suppose NTP (x, y) and P (y, z). Then we have P (x, y) and there is no
u with EC(u, x) and EC(u, y). We obtain P (x, z). Assume there is a v
with EC(v, x) and EC(v, z). Then we have C(v, x) which implies C(v, y)
since P (x, y). Furthermore, we have ¬O(v, z) which implies ¬O(v, y) since
P (y, z). This shows that EC(v, y), a contradiction.

8. Suppose C(u, i(x)). Then there is a v with NTP (v, x) and C(v, u). By 7.
we obtain NTP (v, y) so that C(u, i(y)), and, hence, P (i(x), i(y)) follows.

9. Suppose O(x, y). Then there is a v with P (v, x) and P (v, y). From 8. we
obtain P (i(v), i(x)) and P (i(v), i(y), and, hence, O(i(x), i(y)). Conversely,
suppose O(i(x), i(y)). Then there is a v with P (v, i(x)) and P (v, i(y)). By
6. we get P (v, x) and P (v, y), i.e. O(x, y).
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10. Assume O(c(x),−x). Then there is a v with P (v, c(x)) and P (v,−x). The
first property implies P (i(v),−i(−x)) by 6. and the definition of the closure
operation. From the second we conclude P (i(v), i(−x)) by 8. Together we
obtain O(−i(−x), i(−x)). 4. gives C(−i(−x), i(−x)) which is a contradic-
tion to 1. ¤

2.2. Representation

In this paper, we will use the phrase representation in a very general way. For
a representation we do not require that the elements in question are described
by a different kind of elements. In our sense, an equivalent description by a
different structure (possibly same universe) is regarded as a representation.

The main goal of our work is to provide a sound algebraic theory of the me-
reotopology RT−. In earlier work [19, 20], we compared different mathematical
representations of mereotopology: topological spaces, lattices, and graphs. It
turned out that – at least for the class of mereotopological theories with a single
primitive and a reflexive, anti-symmetric, transitive parthood relation – lattices
and algebraic structures are most appropriate for a representation. Notice, that
the original paper by Asher and Vieu [1] already provided a soundness and com-
pleteness proof with respect to arbitrary topological spaces, of which a subset of
sets satisfies a set of conditions. However, this result does not establish equiv-
alence up to isomorphism. That is exactly what we now provide. Moreover,
the chosen structure here is applicable in a more general context: the work of
Düntsch and Winter [13, 14] used Contact Lattices to represent the models of
the well-known RCC. Some generalizations have been proposed in [21]. This
work continues this tradition and shows close relation to these structures. Our
representation theorem implies that for Stonian p-ortholattices, only a single
Contact relation can be defined. Thus, the Stonian p-ortholattices uniquely de-
fine a class of contact algebras, which allows us to classify the mereotopologies
RCC, RT−, RT−EC , and GRCC within a common framework. That is the long-
term goal of this work; it is anticipated that other mereotopological theories
can be classified within the same framework. Since lattice theory has a long
tradition and is well-explored, many properties and characteristics can then be
applied to the mereotopologies they represent.

3. p-Ortholattices

This section develops the theory of Stonian p-ortholattices from basic and well-
known lattice concepts. The section develops the mathematical theory for the
representation theorem of RT0. For standard lattice-theoretic concepts not ex-
plained here, we refer to [4, 5, 18]. We first introduce pseudocomplemented,
quasicomplemented, and orthocomplemented lattices and show how their prop-
erties restrict the class of p-ortholattices. Then, we demonstrate that every
pseudocomplemented ortholattice must be also quasicomplemented. In the style
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of Glivenko and Frink, we define the skeleton (or center) of p-ortholattices and
show how the pseudocomplementation and quasicomplementation operators can
be used to define an interior and closure mapping with p-ortholattices.

We pay attention to the regularity conditions defined by Asher in Vieu in their
“intended models” and show how they relate to properties that are satisfied in
all p-ortholattices. Finally we state an additional condition on p-ortholattices
which is required to give an isomorphic representation of the models of RT−.
We show equivalent versions of this condition and demonstrate that the class of
p-ortholattices satisfying this additional condition is a natural class of lattices,
satisfying the Stone identities although they are not distributive in general.

3.1. Pseudo- and quasicomplemented lattices

Definition 3.1. A pseudocomplemented lattice (or p-algebra) is an algebraic
structure 〈L, +, ·,∗ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

P0. 〈L,+, ·, 0, 1〉 is a bounded lattice,
P1. a∗ is the pseudocomplement of a, i.e. a · x = 0 ⇐⇒ x ≤ a∗.

Lemma 3.2. Let 〈L,+, ·,∗ , 0, 1〉 be a p-algebra. Then we have

1. 0∗ = 1, 1∗ = 0,
2. a · a∗ = a∗ · a∗∗ = 0,
3. a ≤ a∗∗,
4. a∗∗∗ = a∗,
5. a ≤ b implies b∗ ≤ a∗,
6. a · b = 0 and a · c = 0 iff a · (b + c) = 0,
7. (a + b)∗ = a∗ · b∗.

Proof. 1. Since 0 ·1 = 0 we get 1 ≤ 0∗. From 1∗ ≤ 1∗ we obtain 1∗ = 1∗ ·1 =
0.

2. This follows immediately from a∗ ≤ a∗ and a∗∗ ≤ a∗∗.
3. By 2. we have a∗ · a = 0 which implies a ≤ a∗∗.
4. By 3. a∗ ≤ a∗∗∗. From a · a∗∗∗ ≤ a∗∗ · a∗∗∗ = 0 using 2. and 3. we conclude

a∗∗∗ ≤ a∗.
5. We have a · b∗ ≤ b · b∗ = 0 which implies b∗ ≤ a∗.
6. Assume a ·b = 0 and a ·c = 0. Then we have b ≤ a∗ and c ≤ a∗, and, hence,

b + c ≤ a∗. We conclude a · (b + c) = 0. The converse implication is trivial.
7. From a ≤ a + b and 5. we get (a + b)∗ ≤ a∗. Analogously, we obtain

(a + b)∗ ≤ b∗ so that (a + b)∗ ≤ a∗ · b∗ follows. Since a∗ · b∗ · a = 0 and
a∗ · b∗ · b = 0 we obtain a∗ · b∗ · (a + b) = 0 using 6. which is equivalent to
a∗ · b∗ ≤ (a + b)∗. ¤
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Throughout the paper we will use the properties of the previous lemma without
mentioning.

The notion of a quasicomplement a+ of a is dual to the notion of a pseudocom-
plement, i.e. it is characterized by a+ ≤ x ⇐⇒ a+x = 1. A quasicomplemented
lattice is a lattice in which every element has a quasicomplement, i.e. the dual of
a pseudocomplemented lattice. The following properties of quasicomplements
simply follow from this duality.

Corollary 3.3. Let 〈L, +, ·,+ , 0, 1〉 be a quasicomplemented lattice. Then we
have

1. 0+ = 1, 1+ = 0,
2. a + a+ = a+ + a++ = 1,
3. a++ ≤ a,
4. a+++ = a+,
5. a ≤ b implies b+ ≤ a+,
6. a + b = 1 and a + c = 1 iff a + b · c = 1,
7. (a · b)+ = a+ + b+.

To emphasize the dual nature of pseudocomplemented and quasicomplemented
lattices, the naming as meet-pseudocomplemented and join-pseudocomplemented
are also common. A lattice that is both pseudo- and quasicomplemented (or
meet- and join-pseudocomplemented) is called double pseudocomplemented or
double p-algebra.

3.2. Ortholattices

Definition 3.4. An ortholattice (or orthocomplemented lattice) is a structure
〈L, +, ·,⊥ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

O0. 〈L,+, ·, 0, 1〉 is a bounded lattice,
O1. a⊥ is an orthocomplement of a, i.e. for all a, b ∈ L we have

(a) a⊥⊥ = a,
(b) a · a⊥ = 0,
(c) a ≤ b implies b⊥ ≤ a⊥.

Lemma 3.5. Let 〈L,+, ·,⊥ , 0, 1〉 be an ortholattice. Then we have

1. 0⊥ = 1 and 1⊥ = 0
2. (a + b)⊥ = a⊥ · b⊥ and (a · b)⊥ = a⊥ + b⊥,
3. a + a⊥ = 1.

Proof. 1. From 0 ≤ 1⊥ we conclude 1 = 1⊥⊥ ≤ 0⊥. Analogously, 0⊥ ≤ 1
implies 1⊥ ≤ 0⊥⊥ = 0.
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2. From a ≤ a+ b we conclude (a+ b)⊥ ≤ a⊥. Analogously, we get (a+ b)⊥ ≤
b⊥. Together we obtain (*) (a + b)⊥ ≤ a⊥ · b⊥. Similarly, from a · b ≤ a
we conclude a⊥ ≤ (a · b)⊥ and b⊥ ≤ (a · b)⊥ analogously. We obtain (**)
a⊥ + b⊥ ≤ (a · b)⊥. The remaining inclusions can be derived as follows

a⊥ · b⊥ = (a⊥ · b⊥)⊥⊥

≤ (a⊥⊥ + b⊥⊥)⊥ by (**)

= (a + b)⊥,

(a · b)⊥ = (a⊥⊥ · b⊥⊥)⊥

≤ (a⊥ + b⊥)⊥⊥ by (*)

= a⊥ + b⊥.

3. Consider the following computation

1 = 0⊥ by (1)

= (a · a⊥)⊥

= a⊥ + a⊥⊥ by (2)

= a + a⊥.

This completes the proof. ¤

Again, we will use the properties of the previous lemma throughout the paper
without mentioning.

3.3. p-Ortholattices

Definition 3.6. A pseudocomplemented ortholattice (or p-ortholattice) is a struc-
ture 〈L, +, ·,∗ ,⊥ , 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that

PO0. 〈L,+, ·,∗ , 0, 1〉 is a p-algebra,
PO1. 〈L,+, ·,⊥ , 0, 1〉 is an ortholattice.

The following computation

a⊥∗⊥ ≤ x ⇐⇒ x⊥ ≤ a⊥∗

⇐⇒ a⊥ · x⊥ = 0

⇐⇒ (a + x)⊥ = 0
⇐⇒ a + x = 1.

verifies that the construction a+ = a⊥∗⊥ in an arbitrary p-ortholattice is a
quasicomplement. Hence every p-ortholattice is quasicomplemented and thus a
double p-algebra. Dually, any quasicomplemented ortholattice must be a double
p-algebra.

In the following, we show some equivalences that are satisfied in any p-ortholattice.
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Lemma 3.7. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then we have

1. a+ ≤ a⊥ ≤ a∗,
2. a + a∗ = 1 and a · a+ = 0,
3. a∗⊥ = a⊥+ and a+⊥ = a⊥∗,
4. a∗∗ + a+∗∗ = 1 and a++ · a∗++ = 0,
5. a∗∗ = a⊥∗ and a++ = a⊥+,
6. a+∗ = a⊥∗ and a∗+ = a⊥+.

Proof. 1. follows immediately from a · a⊥ = 0 and a + a⊥ = 1.
2. Using 1. we conclude a · a+ ≤ a · a⊥ = 0 and a + a∗ ≥ a + a⊥ = 1.
3. follows immediately from the definition of +.
4. We have 1 = a+ + a ≤ a+∗∗ + a∗∗ and 0 = a∗ · a ≥ a∗++ · a++.
5. From a⊥ ≤ a∗ we conclude a∗∗ ≤ a⊥∗. For the converse inclusion we have

(a∗ · a⊥∗) · a∗∗ ≤ a∗ · a∗∗ = 0 and (a∗ · a⊥∗) · a⊥∗∗ ≤ a⊥∗ · a⊥∗∗ = 0 which
implies (a∗ ·a⊥∗) ·(a∗∗+a⊥∗∗) = 0. From 4. and a∗∗+a+∗∗ ≤ a∗∗+a⊥∗∗ we
conclude a∗ · a⊥∗ = 0, and, hence, a⊥∗ ≤ a∗∗. The second equation follows
from

a++ = a⊥∗⊥⊥∗⊥ definition +

= a⊥∗∗⊥

= a⊥⊥∗⊥ first equation

= a⊥+. definition +

6. From a+ ≤ a⊥ we conclude a⊥∗ ≤ a+∗. For the converse inclusion we have
(a⊥ ·a+∗) ·a∗∗ ≤ a⊥ ·a∗∗ ≤ a∗ ·a∗∗ = 0 and (a⊥ ·a+∗) ·a+∗∗ ≤ a+∗ ·a+∗∗ = 0
which implies (a⊥ ·a+∗)·(a∗∗+a+∗∗) = 0. From 4. we conclude a⊥ ·a+∗ = 0,
and, hence, a+∗ ≤ a⊥∗. The second equation follows from

a∗+ = a∗⊥∗⊥ definition +

= a⊥⊥∗⊥∗⊥

= a⊥+∗⊥

= a⊥⊥∗⊥ first equation

= a⊥+. definition +

This completes the proof. ¤

Again, we will use the properties of the previous lemma throughout the paper
without mentioning.

In [20], we gave a representation theorem for the theory of RT0 in terms of
p-ortholattices. Later it will turn out that p-ortholattices arising from mereo-
topology satisfy the additional property

(x · y)∗ = x∗ + y∗.
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Figure 2: A p-ortholattice not satisfying (x · y)∗ = x∗ + y∗.

In the following section, we show that the topological “regularity” properties
are maintained in all p-ortholattices.

To conclude this section we want to provide an example of a p-ortholattice that
does not satisfy the property above. Consider the p-ortholattice in Figure 2. In
this lattice we have x∗+y∗ � (x·y)∗. Hence, the original representation theorem
from [20] needs to be corrected by an additional condition. In Section 3.5, we
introduce the notion of a skeleton of pseudocomplemented lattices and use it in
Section 3.6 to define the additional condition required to represent the models
of RT−. We show that this results in a rather natural class of lattices, which we
call Stonian p-ortholattices. Afterwards, a new representation theorem for the
models of RT0 is given. It also shows the homomorphism from p-ortholattices to
models of RT0 directly, instead of relying on the representation of the intended
models from [1]. It turns out that p-ortholattices where the additional property
(x · y)∗ = x∗ + y∗ holds, actually satisfy all the Stone identities.

3.4. Regularity

Now we are in a position to prove some quintessential properties of p-ortholattices
that capture conditions imposed on the regions in the intended models of RT0.
We show that the closure and interior mappings, a → a∗∗ and a → a++, are
both regular in the sense of [1]: cl(x) = cl(int(x)) and int(x) = int(cl(x)) hold
for all regions in the topological interpretation of the models of RT−. We show
that the algebraic counterparts of these properties hold in any p-ortholattice.

Lemma 3.8. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then we have
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1. a∗∗ = (a++)∗∗

2. a++ = (a∗∗)++

Proof. Consider the following computation as proof for (1):

x∗∗ = x⊥⊥∗∗

= x⊥∗∗∗

= x+⊥∗∗

= x++⊥∗

= x++∗∗

= (x++)∗∗

Analogously we can prove (2). ¤

3.5. Skeleton

Skeletons (also called centers) have been first defined in 1929 by Glivenko in the
context of distributive lattices. Later, Frink [15] generalized this result to ar-
bitrary pseudocomplemented meet-semilattices. Since p-ortholattices and their
duals are a subclass of the meet-semilattices, we can define skeletons and dual
skeletons on p-ortholattices using pseudo- and quasicomplementation. Then,
both the skeletons and dual skeletons are always Boolean.

Definition 3.9. Let 〈L, ·,∗ , 0〉 be a pseudocomplemented semilattice. Let S(L) =
{a∗|a ∈ L} be the skeleton of L, maintaining the order relation of L and with
meet a ∧ b = a · b and union a ∨ b = (a∗ · b∗)∗.

Theorem 3.10 (Glivenko-Frink theorem). [15] Let L be a pseudocomplemen-
ted semilattice. Then S(L) is a Boolean algebra. The (unique) complement of
an element a ∈ S(L) is its pseudocomplement a∗ ∈ L.

Theorem 3.11 (Glivenko’s theorem). [15] Let L be a pseudocomplemented
semilattice. Then the mapping a → a∗∗ from L to S(L) is a closure operation.
The mapping is a homomorphism preserving meets, pseudocomplements, the 0
element, and joins when they exist. S(L) is complete if L is complete.

More details, the proof, and a list of properties of the skeleton of pseudocom-
plemented lattices can be found in [5]. We immediately derive the following
corollary for skeletons of pseudocomplements in p-ortholattices.

Corollary 3.12. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then S(L) = {a∗|a ∈
L} = {a∗∗|a ∈ L} forms with meet a ∧ b = a · b and union x ∨ y = (x∗ · y∗)∗
a Boolean algebra. The operation a → a∗∗ is a closure mapping, with S(L)
containing all closed elements of L.
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Dually, we obtain the following corollary for the dual skeleton S̄(L) of quasi-
complements in a p-ortholattice L.

Corollary 3.13. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then S̄(L) = {a+|a ∈
L} = {a++|a ∈ L} forms with meet x∧ y = (x+ + y+)+ and union + a Boolean
algebra. The operation a → a++ is an interior mapping, where S̄(L) contains
all open elements of L.

The equivalences for p-ortholattices from Lemma 3.7 define a set of equiva-
lent combinations of the operators ∗,+ ,⊥ for the closure and interior mappings,
a → a∗∗ and a → a++, respectively. The following corollary gives alternative,
equivalent closure and interior mappings for p-ortholattices.

Corollary 3.14. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then we have

1. a∗∗ = a⊥∗ = a+∗ = a+⊥

2. a++ = a⊥+ = a∗+ = a∗⊥

Proof. Follows directly from Lemma 3.7. ¤

3.6. Stonian p-ortholattices

Here we introduce an additional condition for p-ortholattices that do not hold
for all p-ortholattices as demonstrated by Figure 2. We show that for all p-
ortholattices that satisfy this additional condition, the skeleton as introduced
in the previous section is in fact Boolean. This suffices to define the Stonian
p-ortholattices which will be used for the representation of models of RT− in
the following sections.

Definition 3.15. A p-ortholattice 〈L, +, ·,∗ ,⊥ , 0, 1〉 is called Stonian iff (x ·
y)∗ = x∗ + y∗ for all x, y ∈ L.

The next lemma shows that the skeleton S(L) for Stonian p-ortholattices is
not only a Boolean algebra (as stated in corollary 3.12) but in fact a Boolean
subalgebra of L, i.e. x ∨ y = x + y.

Lemma 3.16. If 〈L, +, ·,∗ ,⊥ , 0, 1〉 is a Stonian p-ortholattice, then S(L) is a
Boolean subalgebra of L.

Proof. By [15] it remains to show that x∨y = x+y for all elements x, y ∈ S(L).
This follows for Stonian p-ortholattices immediately from

x ∨ y = (x∗ · y∗)∗
= x∗∗ + y∗∗ L Stonian
= x + y. ∗ complement in S(L)

This completes the proof. ¤
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Dually, we can show that for Stonian p-ortholattices the dual skeleton S̄(L) is
also a subalgebra of L, i.e. x ∧ y = x · y.

Corollary 3.17. If 〈L, +, ·,∗ ,⊥ , 0, 1〉 is a Stonian p-ortholattice, then S̄(L) is a
Boolean subalgebra of L.

Now, we can justify the naming of these p-ortholattices as Stonian in the tradi-
tion of pseudocomplemented distributive lattices that satisfy the Stone identi-
ties. A Stone lattice is defined to be a pseudocomplemented distributive lattice
that satisfies any (one) of the equivalent conditions (1), (3), and (5) of Theo-
rem 3.18 or (∀x, y ∈ L) x∗ + x∗∗ = 1. However, this condition is true for all
p-ortholattices (compare Lemma 3.7(2)), so it is not sufficient to prove any of
the other equivalent properties for p-ortholattices. The following theorem shows
the applicability of the remaining Stone identities for p-ortholattices (see [5] for
more details). Moreover, it shows that every Stonian p-ortholattice is indeed a
double Stonian p-ortholattice.

Theorem 3.18. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a p-ortholattice. Then the following
statements are equivalent:

1. (x · y)∗ = x∗ + y∗ for all x, y ∈ L;
2. (x + y)+ = x+ · y+for all x, y ∈ L;
3. (x · y)++ = x++ · y++ for all x, y ∈ L;
4. (x + y)∗∗ = x∗∗ + y∗∗ for all x, y ∈ L;
5. S(L) is a Boolean subalgebra of L.
6. S̄(L) is a Boolean subalgebra of L.

Proof. We only show (1) ⇔ (2), (1) ⇔ (3), (2) ⇔ (4), (5) ⇒ (1), and (6) ⇒
(2). (1) ⇒ (5) and (2) ⇒ (6) have already been established by Lemma 3.16 and
Corollary 3.17.
(1) ⇐⇒ (2): From the computation

(x · y)∗ = x∗ + y∗ for all x, y ∈ L

⇔ (x⊥ · y⊥)∗ = x⊥∗ + y⊥∗ for all x, y ∈ L

⇔ (x⊥ · y⊥)∗⊥ = (x⊥∗ + y⊥∗)⊥ for all x, y ∈ L

⇔ (x + y)⊥∗⊥ = x⊥∗⊥ · y⊥∗⊥ for all x, y ∈ L

⇔ (x + y)+ = x+ · y+ for all x, y ∈ L.

we conclude the assertion.

(1) ⇐⇒ (3): Consider the computation:

(x · y)∗ = x∗ + y∗ for all x, y ∈ L

⇔ (x · y)∗⊥ = (x∗ + y∗)⊥ for all x, y ∈ L

⇔ (x · y)⊥+ = (x∗ + y∗)⊥ for all x, y ∈ L

⇔ (x · y)++ = x∗⊥ · y∗⊥ for all x, y ∈ L

⇔ (x · y)++ = x++ · y++ for all x, y ∈ L.
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(2) ⇐⇒ (4): Consider the computation:

(x + y)+ = x+ · y+⊥ for all x, y ∈ L

⇔ (x + y)+⊥ = (x+ · y+)⊥ for all x, y ∈ L

⇔ (x + y)⊥∗ = (x+ · y+)⊥ for all x, y ∈ L

⇔ (x + y)∗∗ = x+⊥ + y+⊥ for all x, y ∈ L

⇔ (x + y)∗∗ = x∗∗ + y∗∗ for all x, y ∈ L.

(5)⇒ (1): If S(L) is a Boolean sublattice of L, then x∧y = x·y and x∨y = x+y.
Because complements in Boolean algebras are unique we obtain a⊥ = a∗. It
follows that x∗ + y∗ = x⊥ + y⊥ = (x · y)⊥ = (x · y)∗.

(6) ⇒ (2) works analogously. ¤

This completes our characterization of the Stonian p-ortholattices. In the next
two sections, we show that the models of the theory RT0 are isomorphic to the
class of Stonian p-ortholattices.

4. From models of RT − to Stonian p-ortholattices

A model U of RT− consists of a set and a primitive relation C. In addition, one
can define the relation P and using the axioms the operations ∪,∩,−, i, and c.
In order to obtain a lattice from U we have to add an additional element 0 and
define

x ≤ y ≡def x = 0 ∨ (x, y ∈ U ∧ P (x, y))

x · y ≡def

{
x ∩ y iff x, y ∈ U ∧O(x, y)

0 otherwise

x + y ≡def





x ∪ y iff x, y ∈ U
y iff x = 0
x iff y = 0

x⊥ ≡def




−x iff x ∈ U ∧ x 6= 1
1 iff x = 0
0 iff x = 1

int(x) ≡def

{
i(x) iff x ∈ U
0 iff x = 0

Notice that a similar result to the lemma below has already been shown in [3]
for Clarke’s mereotopology. However, besides the different scope of that mereo-
topology the set of primitive or derived operations is different. In particular,
Clarke’s mereotopology contains an infinite fusion operation whereas Asher and
Vieu’s theory has an explicit complement.
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Lemma 4.1. Let U be a model of RT−. Then 〈U ∪ {0},+, ·,⊥ , 0, 1〉 is an
ortholattice with C(x, y) ⇐⇒ x � y⊥ for all x, y ∈ U .

Proof. In order to prove that U ∪ {0} is an ortholattice we just show that x⊥

is an orthocomplement of x.

O1(a): If x = 0 or x = 1, then x⊥⊥ = x follows immediately from the definition.
Suppose x 6= 0 and x 6= 1. Then x⊥ = −x, i.e. x⊥ 6= 0 by definition
and x⊥ 6= 1 by Lemma 2.1(2). This implies x⊥⊥ = −− x. We want
to show that C(u,−− x) iff C(u, x) which implies by (A3) that x =
−− x. Therefore, suppose C(u,−− x) and ¬C(u, x). Axiom (A7) implies
that C(−− x,−x), a contradiction to Lemma 2.1(1). Conversely, suppose
C(u, x) and ¬C(u,−− x). The latter implies C(v,−x) or ¬C(v, u) for
all v. In particular, we get C(x,−x) or ¬C(x, u). The first property is a
contradiction to Lemma 2.1(1) and the second to the assumption C(u, x).

O1(b): If x = 0 or x = 1, then x · x⊥ = 0 by the definition of · and ⊥. Suppose
x 6= 0 and x 6= 1 and assume that O(x,−x). Then Lemma 2.1(4) implies
C(x,−x), a contradiction to Lemma 2.1(1). We conclude ¬O(x,−x), and,
hence, x · x⊥ = 0.

O1(c): Suppose x ≤ y. If x = 0, then y⊥ ≤ 1 = x⊥ follows immediately. If
x = 1, then y = 1 and we obtain y⊥ = 0 ≤ x⊥. Now suppose x 6= 0 and
x 6= 1. In this case y 6= 0, and the case y = 1 follows as above so that we
assume y 6= 0 and y 6= 1. Notice that in this case x⊥ = −x, y⊥ = −y and
x ≤ y is equivalent to P (x, y). Let be C(u,−y). Then there is a v with
¬C(v, y) and C(v, u). By the definition of P we conclude ¬C(v, x), and,
hence, C(u,−x). This implies P (−y,−x), and, hence, y⊥ ≤ x⊥.

Suppose x, y ∈ U and C(x, y), and assume x ≤ y⊥. The latter implies that y⊥ =
−y ∈ U so that we obtain P (x,−y). We conclude C(−y, y), a contradiction to
Lemma 2.1(1). Suppose ¬C(x, y), and let be C(u, x). Notice that y 6= 1, i.e.
−y exists and is equal to y⊥, since y is not universally connected. By (A7) we
conclude C(u,−y), and, hence P (x,−y). From x,−y ∈ U we conclude x ≤ y⊥.
This completes the proof. ¤

Now we may define pseudocomplementation and quasicomplementation by:

x∗ ≡def int(x)⊥,

x+ ≡def int(x⊥)

The following two propositions do not have a corresponding result for Clarke’s
mereotopology.

Lemma 4.2. Let U be a model of RT−. Then 〈U ∪ {0},+, ·,∗ , 0, 1〉 is a p-
algebra.
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Proof. We have to show that x · y = 0 iff y ≤ x∗. Instead we show that x+ is
a quasicomplement of x, i.e. x + y = 1 iff x+ ≤ y. This immediately implies

x · y = 0 ⇔ x⊥ + y⊥ = 1

⇔ x⊥+ ≤ y⊥

⇔ y ≤ x∗.

Suppose x + y = 1. If x = 0, then y = 1, and, hence, x+ ≤ 1. If y = 0, then
x = 1. If x = 1 we immediately conclude x+ = 0 ≤ y. Now suppose x, y ∈ U
with x 6= 0, 1 and y 6= 0 which implies x + y = x ∪ y and x+ = i(−x). Let
be C(u, i(−x)). Then there is a v ∈ U with NTP (v,−x) and C(v, u). Assume
¬O(u,−x). Then EC(u,−x) since C(u,−x) which follows from P (i(−x),−x)
(Lemma 2.1(5)) and C(u, i(−x)). On the other hand, we conclude ¬O(u, v) since
otherwise O(u, v) and P (v,−x) obtained from NTP (v,−x) implies O(u,−x).
Since C(v, u) we get EC(u, v). Together EC(u,−x) and EC(u, v) is a con-
tradiction to NTP (v,−x). Therefore, we must have O(u,−x). Consequently,
u ∩ −x exists, and we have ¬C(u ∩ −x, x) since otherwise C(x,−x) would fol-
low. Since x + y = 1 we conclude that C(u ∩ −x, y), and, hence, C(u, y). We
obtain P (i(−x), y), and, hence, x+ ≤ y. Conversely, suppose x+ ≤ y. If x = 0,
then y = 1, and, hence, x + y = 1. If x = 1, x + y = 1 follows immedi-
ately. Now suppose x, y ∈ U and x 6= 0, 1, i.e. x+ = i(−x). Let be ¬C(u, x).
Then u ≤ x⊥ = −x by Lemma 4.1, i.e. P (u,−x). Since we have P (i(u), u)
by Lemma 2.1(5) and P (i(u), i(−x)) by Lemma 2.1(7) we obtain O(u, i(−x)).
Lemma 2.1(4) shows C(u, i(−x)). Since i(−x) = x+ ≤ y we have C(u, y). We
have just shown that every element is either in contact to x or to y so that
x + y = 1 follows. ¤

Theorem 4.3. Let U be a model of RT−. Then 〈U ∪ {0}, +, ·,∗ ,⊥ , 0, 1〉 is a
Stonian p-ortholattice.

Proof. It remains to show that (x · y)∗ = x∗ + y∗. To this end we show

(∗) int(x · y) = int(x) · int(y)

which immediately implies

(x · y)∗ = int(x · y)⊥

= (int(x) · int(y))⊥ (∗)
= int(x)⊥ + int(y)⊥

= x∗ + y∗.

If x = 0 or y = 0, (∗) is true by definition. Suppose x 6= 0 and y 6= 0, i.e.
int(x) = i(x) and int(y) = i(y). If ¬O(x, y), then i(x · y) = 0. From Lemma
2.1(9) we obtain ¬O(i(x), i(y)), and, hence, i(x) · i(y) = 0. Suppose we have
O(x, y), i.e. x · y = x ∩ y. Then we have O(i(x), i(y)) by Lemma 2.1(9) so that
i(x) · i(y) = i(x) ∩ i(y) follows.
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We have P (i(x ∩ y), i(x)) and P (i(x ∩ y), i(y)) by Lemma 2.1(8). This implies
P (i(x ∩ y), i(x) ∩ i(y)), i.e. i(x ∩ y) ≤ i(x) ∩ i(y).

Conversely, i(x) and i(y) are open so that i(x) ∩ i(y) is open by (A10), i.e.
i(i(x)∩ i(y)) = i(x)∩ i(y). Furthermore, i(x) ≤ x and i(y) ≤ y (Lemma 2.1(5))
implies i(x) ∩ i(y) ≤ x ∩ y, and, hence, i(x) ∩ i(y) = i(i(x) ∩ i(y)) ≤ i(x ∩ y)
using Lemma 2.1(8). ¤

5. From Stonian p-ortholattices to models of RT −

In this section we want to show the converse of Theorem 4.3. Therefore, we start
with a Stonian p-ortholattice and construct a model of RT−. This requires at
least to remove the smallest element 0.

Theorem 5.1. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then L+ =
{x ∈ L | x 6= 0} together with the relation xCy ⇐⇒ x � y⊥ is a model of
RT−.

Proof. First, we prove the following three properties for all x, y ∈ L+:

(a) P (x, y) iff x ≤ y,
(b) O(x, y) iff x · y 6= 0,
(c) NTP (x, y) iff ¬C(x, y∗).

(a) This follows immediately from

P (x, y) ⇔ ∀u 6= 0[C(u, x) → C(u, y)]

⇔ ∀u 6= 0[u � x⊥ → u � y⊥]

⇔ ∀u 6= 0[u ≤ y⊥ → u ≤ x⊥]

⇔ y⊥ ≤ x⊥

⇔ x ≤ y O1(a,c)

(b) Using (a) we get

O(x, y) ⇔ ∃u 6= 0[u ≤ x ∧ u ≤ y]
⇔ x · y 6= 0.

(c) Suppose NTP (x, y) and assume C(x, y∗). From NTP (x, y) we get P (x, y)
and x ≤ y. The first property implies C(y, y∗). Since y · y∗ = 0 we have
in fact EC(y, y∗). The second property x ≤ y implies x · y∗ ≤ y · y∗ = 0
so that EC(x, y∗) follows. But EC(y, y∗) and EC(x, y∗) is a contradiction
to NTP (x, y). Conversely, suppose ¬C(x, y∗). Then we have x ≤ y∗⊥ =
y⊥+ = y++ ≤ y. Assume there is a z 6= 0 with EC(z, x) and EC(z, y).
Then C(z, x) and z · y = 0, i.e. z ≤ y∗. The latter implies P (z, y∗), and,
hence, C(y∗, x), a contradiction. Therefore, we have NTP (x, y).
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The ten axioms of RT− are now shown as follows.

(A1). If x 6= 0, then x � x⊥, and, hence C(x, x).
(A2). This follows immediately from O1(a,c).
(A3). Suppose z ≤ x⊥ iff z ≤ y⊥. Then we obtain x⊥ ≤ y⊥ and

y⊥ ≤ x⊥, and, hence, x⊥ = y⊥. O1(a) implies x = y.
(A4). If z 6= 0, then z � 0 = 1⊥ so that C(z, 1) follows.
(A5). The following computation

¬C(u, x + y) ⇔ u ≤ (x + y)⊥

⇔ u ≤ x⊥ · y⊥
⇔ ¬C(u, x) ∧ ¬C(u, y)

shows that C(u, x + y) iff C(u, x) or C(u, y).
(A6). Suppose x · y 6= 0. If ¬C(u, x · y), then u ≤ (x · y)⊥, and, hence

x · y ≤ u⊥. If v ≤ x and v ≤ y, then v ≤ x · y ≤ u⊥ so that
¬C(v, u) follows. Conversely, suppose v ≤ x and v ≤ y implies
¬C(v, u) for all v 6= 0. In particular, we obtain ¬C(x · y, u).

(A7). Notice that we have

∃u 6= 0[¬C(u, x)] ⇔ ∃u 6= 0[u ≤ x⊥]

⇔ x⊥ 6= 0
⇔ x 6= 1.

Suppose x 6= 1 and compute

¬C(u, x⊥) ⇔ u ≤ x

⇔ P (u, x) by (a)
⇔ ∀v 6= 0[C(v, u) → C(v, x)]
⇔ ∀v 6= 0[¬C(v, u) ∨ C(v, x)]
⇔ ¬∃v 6= 0[¬C(v, x) ∧ C(v, u)]

(A8). This axiom follows immediately from

¬C(u, x⊥+) ⇔ u ≤ x⊥+⊥

⇔ u ≤ x∗ Lemma 3.7(3)
⇔ P (u, x∗) by (a)
⇔ ∀v 6= 0[C(v, u) → C(v, x∗)]
⇔ ∀v 6= 0[¬C(v, u) ∨ C(v, x∗)]
⇔ ∀v 6= 0[¬C(v, u) ∨ ¬NTP (v, x)] by (c)
⇔ ¬∃v 6= 0[NTP (v, x) ∧ C(v, u)]

(A9). We immediately conclude c(1) = i(1⊥)⊥ = 1⊥⊥+⊥ = 1+⊥ =
0⊥ = 1.
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Figure 3: The Stonian p-ortholattice C6 and the non-modular lattice N5.

(A10). First of all, we have OP (x) iff x = i(x) = x⊥+ = x++. Now,
assume OP (x), OP (y) and O(x, y). Then x · y 6= 0 by (b), i.e.
x · y ∈ L+, and we have

(x · y)++ = (x+ + y+)+ Lemma 3.3(7)

= x++ · y++ L Stonian and Theorem 3.18
= x · y, OP (x) and OP (y)

and, hence, OP (x · y). ¤

Due to Theorem 4.3 and Theorem 5.1 in the remainder of the paper we will
always consider the standard contact relation C(x, y) iff x � y⊥ on a Stonian
p-ortholattice.

6. Strict non-distributivity for RT −
EC

Previously, mereotopologies have been represented using Boolean Contact Al-
gebras [12, 13, 24, 26], whose main structure constitutes a Boolean algebra
or more generally a pseudocomplemented distributive lattice. Both have dis-
tributivity as an important characteristic. Notice that the lattices representing
Clarke’s full theory [3] are also distributive. Although we have a∗ + a∗∗ = 1
and a+ ·a++ = 0 so that any p-ortholattice satisfies the double Stone identities,
the models of RT− are far from being distributive. The next theorem will show
that a model of RT− is distributive if and only if it does not satisfy axiom
(A11). In fact, all models satisfying (A11) are then non-modular, which is a
more rigorous restriction than non-distributivity. This gives us a characteriza-
tion of RT−EC . Moreover, a new condition when a p-ortholattice is distributive
and thus Boolean follows from Theorem 6.1.

Theorem 6.1. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the fol-
lowing statements are equivalent:
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1. L is modular.
2. a∗ = a⊥ for all a ∈ L.
3. a∗ = a+ for all a ∈ L.
4. L is a Boolean algebra
5. L is distributive.
6. L does not satisfy (A11).
7. L does not have C6 as a subalgebra.

Proof. We are going to show 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 5. ⇒ 1. and 2. ⇔ 6. and
3. ⇔ 7. Notice that the implications 4. ⇒ 5. and 5. ⇒ 1. are trivial.

1. ⇒ 2. : Suppose there is an element a with a⊥ � a∗. Then the elements
0, a, a⊥, a∗, 1 form by Lemma 3.2(2), Corollary 3.3(2), and Lemma 3.7(2)
a sublattice that is isomorphic to the pentagon N5 (see Figure 3), i.e. L
is not modular, a contradiction to 1.

2. ⇒ 3. : This follows immediately from

a⊥ = a⊥⊥⊥

= a⊥∗⊥ by 2.

= a+

3. ⇒ 4. : If a∗ = a+ for all a ∈ L, then L is a complemented lattice in which
the complementation is simultaneously a quasicomplementation. Such a
lattice is known to be a Boolean algebra [4].

2. ⇔ 6.: First of all, Axiom (A11) can be rewritten as follows:

(A11) ⇐⇒ ∃x, y[x 6= 0 ∧ y 6= 0 ∧ C(x, y) ∧ ¬O(x, y)]
⇐⇒ ∃x, y[C(x, y) ∧ ¬O(x, y)] since ∀z[¬C(0, z)]

⇐⇒ ∃x, y[x � y⊥ ∧ x · y = 0]

⇐⇒ ∃x, y[x � y⊥ ∧ y ≤ x∗]

It remains to show that the last property is equivalent to existence of
an element a ∈ L with a⊥ 6= a∗. Therefore, assume there are x, y with
x � y⊥∧y ≤ x∗. Then y � x⊥, and, hence, x⊥ 6= x∗. Conversely, suppose
a⊥ 6= a∗, i.e. a∗ � a⊥ by Lemma 3.7(1), and choose x = a∗ and y = a.

3. ⇔ 7.: Assume L has C6 as a subalgebra. With the notation in Figure 3 we
have a+ = a⊥ 6= a∗. Conversely, assume there is an element a ∈ L with
a+ 6= a∗. Then we have a++ = a∗⊥ 6= a+⊥ = a∗∗ so that the elements
0, a+, a∗, a++, a∗∗, 1 form by Lemma 3.2(2), Corollary 3.3(2), and Lemma
3.7(2) a subalgebra of L that is isomorphic to C6. ¤
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Figure 4: The outer structure of C14, C16, C18 and C20.

7. Representation of RT

In the presence of Axiom (A12) four Stonian p-ortholattices are of interest. In
particular, we will show in Theorem 7.2 that one of those lattices has to be a
sublattice of the structure in question. We now introduce those lattices.

The four Stonian p-ortholattices of C14, C16, C18 and C20 have a common outer
structure. They only differ in the intervals between y++ · x+ and y∗∗ · x∗ and
between (y∗∗ · x∗)⊥ and (y++ · x+)⊥. Notice that those two intervals must be
dual due to the orthocomplement operation .⊥. The common outer structure
of all four lattices is provided in Figure 4 and the specific inner structure in
Figure 5. Even though the outer structure of all four lattices is the same, none
of them is a sublattice of any of the others. They differ either in the meet of
y++ and x∗ and the meet of y∗∗ and x+ or the union of y++ · x∗ and y∗∗ · x+.
In C14 we have y++ ·x∗ = y++ ·x+ = y∗∗ ·x+ whereas y++ ·x∗ 6= y++ ·x+ holds
in C16 − C20, and y∗∗ · x+ 6= y++ · x+ holds in C18 and C20. In C18 we have
y++ · x∗ + y∗∗ · x+ = y∗∗ · x∗ whereas the two elements are different in C20.

We have WCont(x, y∗) and EC(x, x∗), i.e. the lattices satisfy (A11) and (A12).
Since (A13) holds in all finite Stonian p-ortholattices all four lattices are models
of RT0.

Lemma 7.1. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the fol-
lowing statements are equivalent:

1. L satisfies (A12).
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Figure 5: The inner structure of C14, C16, C18 and C20.
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2. L satisfies the property (A12’):

(A12′) ∃x, y[x 6= 0 ∧ x∗∗ ≤ y++ ∧ ∀z[x � z++ ∨ z∗∗ � y]].

Proof. First of all, we have

(A12) ⇐⇒ ∃x, y[x 6= 0 ∧ y 6= 0 ∧WCon(x, y)]
⇐⇒ ∃x, y[x 6= 0 ∧ y 6= 0 ∧ ¬C(x∗∗, y∗∗)

∧ ∀z[z 6= 0 ∧ x ≤ z ∧ z++ = z → C(z∗∗, y)]]

⇐⇒ ∃x, y[x 6= 0 ∧ y 6= 0 ∧ x∗∗ ≤ y∗∗⊥

∧ ∀z[z 6= 0 ∧ x ≤ z ∧ z++ = z → z∗∗ � y⊥]].

1. ⇒ 2. : Suppose x, y satisfy (A12). Then we want to show that x and y⊥

satisfy (A12′). We have x 6= 0 and x∗∗ ≤ y∗∗⊥ = y⊥++. Now, suppose
z ∈ L with x ≤ z++. Then we have to show that z∗∗ � y⊥. We have
z++ 6= 0 since x 6= 0 and (z++)++ = z++. From the last of the equivalent
versions of (A12) above we conclude z++∗∗ � y⊥. This implies z∗∗ � y⊥.

2. ⇒ 1. : Suppose x, y satisfy (A12’). Then we want to show that x and y⊥

satisfy the last of the equivalent versions of (A12) above. We have x 6= 0.
If y⊥ = 0, then y = 1 and we have x ≤ 1++ and 1∗∗ ≤ y, a contradiction
to (A12’). Furthermore, x∗∗ ≤ y++ = y⊥⊥++ = y⊥∗∗⊥ = (y⊥)∗∗⊥. Now
assume that there is a z ∈ L with z 6= 0, x ≤ z and z++ = z. Then we
have x ≤ z = z++ so that (A12’) implies z∗∗ � y = (y⊥)⊥. ¤

We are now ready to prove that in the context of Axiom (A12) one of the four
lattices C14, C16, C18 or C20 is always included as a sublattice.

Theorem 7.2. Let 〈L, +, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice satisfying (A12).
Then L has C14, C16, C18 or C20 as a subalgebra.

Proof. By Lemma 7.1 L satisfies (A12’). We want to show that given x, y
satisfying (A12′) the elements 0, x++, x∗∗, y++, y∗∗, y+, y∗, x+, x∗, 1 induce a
subalgebra isomorphic to one of the structures C14, C16, C18 or C20. Therefore,
we first show that x++ � x∗∗ � y++ � y∗∗. Notice that this will imply
that x+, x∗, y+ and y∗ are also different by applying the orthocomplementation.
Assume x++ = x∗∗. Then we have x ≤ x∗∗ = x++ and x∗∗ ≤ y++ ≤ y,
a contradiction to (A12′) (with z = x). Assume y++ = y∗∗. Then we have
x ≤ x∗∗ ≤ y++ and y∗∗ = y++ ≤ y, again a contradiction to (A12′) (with z = y).
Finally, assume x∗∗ = y++. Then we have x∗∗ = y++ = (y++)++ = (x∗∗)++ =
x++, which we have already shown is impossible. So far we have verified the
left and the right chain of the outer structure of the four lattices. In the next
step we concentrate on the rest of the outer structure. Obviously we have
x∗∗ ·x∗ = 0 = y∗∗ ·y∗. We want to show that y++ ·x+ 6= 0. Assume y++ ·x+ = 0.
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This implies y++ ≤ x+∗ = x∗∗, again a property which cannot hold. Finally, we
want to show that y++ · x+ 6= y∗∗ · x∗. Assume that y++ · x+ = y∗∗ · x∗. From
y∗∗ · x∗ · y∗ = 0 and y∗∗ · x∗ · x = 0 we conclude y∗∗ · x∗ · (y∗ + x) = 0 using
Lemma 3.2. This implies

y∗∗ ≤ (x∗ · (y∗ + x))∗ see above
= x∗∗ + (y∗∗ · x∗) Stone identities

= x∗∗ + (y++ · x+) assumption

≤ x∗∗ + y++

= y++,

again a contradiction. This completes the outer structure since all remaining
properties follow from those shown using orthocomplementation. Depending on
whether the elements y++ ·x∗ and y++ ·x+, the elements y∗∗ ·x+ and y++ ·x+ or
the elements y++ · x∗+ y∗∗ · x+ and y∗∗ · x∗ are equal or different we obtain the
lattices C14, C16, C18 or C20. Notice that in the case that y++ · x∗ = y++ · x+

and y∗∗ · x+ 6= y++ · x+ we obtain C16 by letting x be y∗ and y be x∗. ¤

As already mentioned all four lattices of Figure 4,5 satisfy (A11) so that the
previous theorem induces the following corollary.

Corollary 7.3. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice that satisfies
(A12). Then L also satisfies (A11).

Proof. By Theorem 7.2 one of the four lattices C14, C16, C18 or C20 is a
subalgebra of L. In that subalgebra we have x � x++ = x∗⊥ and x·x∗ = 0. This
is equivalent to C(x, x∗) and ¬O(x, x∗), i.e. ECx, x∗). None of the properties
does depend on any other element in L so that EC(x, x∗) also holds in L. ¤

This finishes the representation of the theory RT (RT0 without (A13)). The
last corollary shows that (A11) is captured by (A12) and thus unnecessary in
the full theory. However, this is far from obvious in the original theory and the
topological models to which soundness and completeness has been proved.

8. Conclusion and Outlook

In this paper we have provided a representation theorem of RT and its subthe-
ories by p-ortholattices. This representation shows that the connection relation
can be uniquely defined through the lattice structure alone. Since the lattices
are only defined by their order and meet relation, this hints that the theory can
also be based on parthood and overlap relations while having exactly the same
models. An alternative axiomatization of RT− can be based on the properties of
Stonian p-ortholattices (orthocomplementation, pseudocomplementation, Stone
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identity) which can be defined solely in terms of the partial order underlying the
lattice. Together with the operations of ortho- and pseudo-complementation,
we are then able to uniquely define the contact relation C(x, y) ⇐⇒ x 6≤ y⊥.

The paper gives a full lattice-theoretic characterization of the models of RT and
RT−. It contributes to the understanding of different region-based (point-free)
QSR frameworks. In particular, as a pure mathematical account it helps in un-
derstanding the models of the theory RT . The main part of the paper introduces
Stonian p-ortholattices as generalization of the well-known (distributive) Stone
lattices. The work exhibits the non-distributive character of Asher and Vieu’s
[1] spatial theory, which is so far unique amongst mereotopologies. All other
characterizations [3, 26, 13] have identified Boolean or pseudocomplemented dis-
tributive lattices as models of other mereotopologies. This paper is a significant
step towards a unified lattice-theoretic account of mereotopologies and more
general of qualitative region-based theories of space.

In Section 6 we have shown that distributivity forces Stonian p-ortholattices
to be Boolean algebras, i.e. all three complement operations coincide. In that
case the contact relation collapses to overlap similar to Clarke’s original sys-
tem. As already discussed in the introduction this is not a defect since Stonian
p-ortholattices describe a larger set of regions than distributive theories such
as RCC and their algebraic counterpart, Boolean contact algebras (BCAs). On
the contrary, this fact actually shows that distributivity is not a desired prop-
erty in this framework. Even though Stonian p-ortholattices are, in general, not
distributive, their skeleton (and its dual) is. For a detailed study of the rela-
tionship between BCAs and Stonian p-ortholattices via their skeleton we refer
to [30].

Further work will concentrate on topological representation theorems of Stonian
p-ortholattices similar to those already developed for Boolean contact algebras.
This will also clarify the exact nature of the topological models of RT0.
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