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Abstract
Qualitative reasoning about commonsense space
often involves entities of different dimensions. We
present a weak axiomatization of multidimensional
qualitative space based on ‘relative dimension’ and
dimension-independent ‘containment’ which suf-
fice to define basic dimension-dependent mereoto-
pological relations. We show the relationships to
other meoreotopologies and to incidence geome-
try. The extension with betweenness, a primitive of
relative position, results in a first-order theory that
qualitatively abstracts ordered incidence geometry.

1 Introduction
Within Qualitative Spatial Reasoning, theories of topological
and mereological relations are abundant, but most of these are
restricted to one class of ‘foundational’ entities of uniform di-
mension: usually either points or regions (cf. [Cohn & Haz-
arika, 2001] for an overview). However, humans can easily
reason about the relationships between entities of various di-
mensions. Commonsense reasoning should achieve the same;
e.g. for representing (sketch) maps on which, e.g., streets or
rivers border areas such as city blocks and meet in points such
as intersections or bridges. Ultimately, we want to model di-
rections similar to those humans often give: “Follow 6th Ave.
towards the hospital, at the first light after the river turn right
into Main St. Follow it through the park until you see the
store on the left.” Continuous incidence geometry (and all
of its extensions) which captures contact amongst entities re-
gardless of their dimension seems like a natural fit but is too
strong because it makes the following two assumptions:
(a) Two distinct points determine a unique line (line axiom);
(b) For two distinct entities A,B of equal dimension in a

higher-dimensional space, there exists two more entities
C, D of the same dimension so that C is in between A
and B, and B is between A and D (continuity axiom).1

These exclude interpretations of, e.g., roads, rivers, or rail-
ways as lines2, since such linear features commonly intersect

∗This work has been supported by the Natural Sciences and En-
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1(a) implies that A, B, C, and D are in fact incident with a unique
common entity of the next highest dimension.

2‘Line’ as used in the paper includes straight lines and curves.

in more than two points. Even if Main St. intersects, e.g.,
Ring Rd. twice, both are distinguishable by other intersec-
tions they have not in common. Moreover, models of every-
day space are often only interested in a few meaningful enti-
ties (such as intersections or bridges) and not in the infinitely
many points forced to exist by continuous geometry.

We design a multidimensional theory of space that al-
lows such intuitive, map-like, representations of common-
sense space as models. Though its main application will be in
modelling 2- and 3-dimensional space, the general axiomati-
zation is independent of the number of dimensions. We start
with a naı̈ve concept of relative dimensionality which suffices
to compare and distinguish dimensions of entities but requires
no heavy mathematical apparatus such as number theory or
point-set topology. Together with containment and contact
– that can hold between entities regardless of their dimen-
sion – we give an intuitive classification of contact as three
jointly exhaustive and pairwise disjoint relations that differ
only in the relative dimension between the two entities in con-
tact. The generality of this multidimensional mereotopology
is demonstrated by extending it to two prominent mereotopo-
logies – the Region Connection Calculus (RCC) [Cohn et al.,
1997] and the INCH Calculus [Gotts, 1996]. Extending the
theory to k-partite incidence structures verifies that we indeed
abstract n-dimensional incidence geometry as desired.

A notion of relative position significantly broadens the ex-
pressiveness of the theory, in particular for describing maps
or directions. As primitive we choose ‘betweenness’, a qua-
ternary relation only constrained by the relative dimension
amongst the involved entities. Unlike relations such as ‘left
of’ or ‘behind’, ‘between’ is independent of the observation
point. Integrated into our multidimensional mereotopology
we obtain ‘betweenness mereotopology’, a qualitative ab-
straction of ordered incidence geometry that still avoids the
geometric assumptions (a) and (b). Despite its simplicity,
such an extension of multidimensional mereotopology by rel-
ative position has not been studied before. Many standard ge-
ometries such as affine or Euclidean geometry are extensions
of the ‘betweenness mereotopology’.

1.1 Background and related work
Qualitative representations of space that allow for multiple
dimensions have received little attention, mainly focusing on
multidimensional mereotopology (see [Galton, 2004] for an



overview). Our work is most closely related to the INCH
calculus [Gotts, 1996] using the single primitive INCH(x,y)
with the meaning of ‘x includes a chunk (equi-dimensional
part) of y’. It is capable of defining both kinds of strong con-
tact (partial overlap and incidence) but cannot capture super-
ficial contact, e.g. when two equi-dimensional regions only
share part of the boundary. Though we have drawn inspira-
tion from the INCH calculus, our works differs in that we use
relative dimension and dimension-independent containment
as primitives. Only subsequently we define dimension-de-
pendent mereotopological predicates with tighter constraints
regarding the relative dimension of the involved entities. Gal-
ton [1996; 2004] discusses related logical accounts of dimen-
sion-independent mereotopology; but those focus on the de-
finability of dependent lower-dimensional entities, in partic-
ular boundaries, in a top-down approach to mereotopology.

Mereotopological relations have also been defined using
the intersection approach in which relations are classified ac-
cording to the intersection of interiors, boundaries and exteri-
ors of entities. [Clementini et al., 1993; Egenhofer & Herring,
1991; McKenney et al., 2005] distinguish various point-point,
point-line, point-area, line-line, line-area, and area-area con-
tact relations; e.g. [McKenney et al., 2005] distinguish 61
line-line relations alone. Such large sets of relations are im-
practical for automated reasoning or for interactions with hu-
mans. Moreover, only [McKenney et al., 2005] explicitly de-
fine dimension in their framework, but using the topological
definition of Lebesgue covering dimension.

Despite extending mereotopology with ‘betweenness’ , our
work has little in common with [Tarski, 1956] or other me-
reogeometries – equi-dimensional mereotopologies extended
by geometric primitives such as congruence or equidistance
[Borgo & Masolo, 2010]. We are primarily interested in qual-
itative weakening of geometry and less concerned with the
reconstruction of full Euclidean geometry which requires ad-
ditional geometric primitives in our theory. Moreover, entities
of all dimensions are treated equally as first-order entities in
our theory. (Linear) orderings of points on lines as explored
by, amongst others, [Eschenbach & Kulik, 1997] are capable
of defining betweenness, but rely on a direction as implied
by ‘oriented lines’. Moreover, their work is restricted to or-
derings of points on lines. Hence, it is a special case of our
multidimensional and undirected betweenness relation.

2 A naı̈ve theory of relative dimension
Various notions of dimension have been employed within the-
ories of qualitative space. We want to axiomatize3 dimension
in the weakest possible way which is still suitable for defining
spatial relations that are limited to entities of certain (relative)
dimensions; e.g. we want to express that A has a higher di-
mension than B or that the intersection of A and B is of a
dimension lower than A and B. But it is unnecessarily restric-

3Throughout the paper we use unsorted first-order logic with
equality and ¬,∧,∨,→,↔ as the usual connectives. Variables range
over ‘spatial entities’ of unique and uniform (across its parts) dimen-
sions. Sentences are labelled ‘[module]-[type][number]’ with types:
axiom (A), definition (D), theorem (T), extension (E), mapping (M).
We maintain the numbering from [Hahmann & Grüninger, 2011].

tive to e.g. require that dimensions can be added or subtracted
or to restrict the total number of distinct dimensions. The
sought axiomatization should be just strong enough to allow
us to compare the dimensions of spatial entities.

For this purpose we reuse core ideas from the definitions
of small and large inductive dimensions [Engelking, 1995],
but remove all unnecessary restrictions and the original heavy
topological apparatus. Our theory of linear dimension, Tld =
{D-A1–D-A6, D-D1–D-D5} weakly axiomatizes the primi-
tive relation x < y meaning ‘x has a lower dimension than y’.
< is a strict partial order (irreflexive, asymmetric, transitive).
D-D1 defines x =dim y as an equivalence relation (reflexive,
symmetric, transitive) expressing that ‘x and y are of equal di-
mension’. Then, two entities are always dimensionally com-
parable, i.e. there is a linear order over the equivalence classes
defined by =dim. The theory Tld = is a more compact ax-
iomatization of one of the theories proposed in [Hahmann
& Grüninger, 2011]. We further include ZEX from [Gotts,
1996]) to denote a potential (unique) zero entity of lowest
dimension (D-A4, D-A5), it is mainly of interest for the rela-
tionships to other mereotopologies. D-A6 ensures that there
is a unique lowest dimension apart from that of ZEX . D-D2
to D-D5 are simple, but convenient definitions. In most ap-
plications some maximum dimension exists as captured by
D-E2. A further natural restriction – though unnecessary for
our results – is that to discrete dimensions (D-E5, D-E6).
(D-A1) x ≮ x (< irreflexive)
(D-A2) x < y → y ≮ x (< asymmetric)
(D-A3) x < y∧ y < z → x < z (< transitive)
(D-A4) ZEX(x)∧ZEX(y)→ x = y (unique ZEX)
(D-A5) ZEX(x)∧¬ZEX(y)→ x < y (ZEX has minimal dim.)
(D-A6) ∃x[¬ZEX(x)∧∀y(y < x → ZEX(y))] (a lowest dim.)
(D-D1) x =dim y ↔ x ≮ y∧ y ≮ x (equal dimension)
(D-D2) x ≤ y ↔ x < y∨ x =dim y (lesser or equal dim.)
(D-D3) MaxDim(x)↔∀y(x ≮ y) (maximal-dimensional entity)
(D-D4) MinDim(x)↔¬ZEX(x)∧∀y(y < x → ZEX(y))

(minimal non-zero dimension)
(D-D5) x ≺ y ↔ x < y∧∀z[z ≤ x∨ y ≤ z] (next highest dimension)
(D-E2) ∃x(MaxDim(x)) (bounded ≡ a maximal dim.)
(D-E5) ¬MaxDim(x)→∃y(x ≺ y) (next highest dim. exists)
(D-E6) ¬ZEX(x)∧¬MinDim(x)→∃y(y ≺ x) (next lowest dim.)

While Tld is agnostic about the existence of ZEX , Z-A1 or
NZ-A1 force or prevent a zero entity.
(Z-A1) ∃xZEX(x) (existence of a ZEX)
(NZ-A1) ¬ZEX(x) (no ZEX exists)

3 Mereotopological relations
For a theory of qualitative space, we also need a spatial prim-
itive. We choose the dimension-independent (not restrict-
ing the involved entities to specific dimensions) mereological
primitive of containment, denoted by Cont(x,y), and then de-
fine a dimension-independent topological relation of contact,
denoted by C(x,y). Afterwards, we show how three types of
contact can be distinguished by the relative dimension of the
involved entities, justifying our initial choice of containment
as an adequate primitive; see [Hahmann & Grüninger, 2011]
for some more details omitted here. The resulting theory gen-
eralizes other mereotopologies as discussed in Section 4.



3.1 Dimension-independent spatial relations
What parthood is to equi-dimensional mereotopology, con-
tainment is to dimension-independent mereotopology. In its
point-set interpretation, we say ‘y contains x’, i.e. Cont(x,y),
if every point in space occupied by x is also occupied by y,
that is, the set of points covered by x is a subset of the points
covered by y. In the intended topological models, all entities
are assumed to be closed, i.e. to include their boundaries, just
as in the RCC. An entity can contain not only a (smaller) en-
tity of the same dimension (equi-dimensional parthood), but
also a lower-dimensional entity. E.g. a 2D-surface may con-
tain another 2D-surface, a line, or a point. An entity is dif-
ferent from the set of lower-dimensional entities it contains.
Containment is a non-strict partial order; the zero entity nei-
ther contains nor is contained in any other region (C-A4).
(C-A1) ¬ZEX(x)→Cont(x,x) (Cont reflexive)
(C-A2) Cont(x,y)∧Cont(y,x)→ x = y (Cont antisymmetric)
(C-A3) Cont(x,y)∧Cont(y,z)→Cont(x,z) (Cont transitive)
(C-A4) ZEX(x)→∀y(¬Cont(x,y)∧¬Cont(y,x))

Now contact C is definable in terms of containment (C-D),
resembling the definition for overlap O in RCC. C is reflexive,
symmetric and monotone with respect to Cont (C-T4). The
reverse of C-T4 is not entailed, but posited as C-A5 (weaker
than C-A5 in [Hahmann & Grüninger, 2011] to not enforce
extensionality of C). We obtain Tcont = {C-A1–C-A5, C-D}.
(C-D) C(x,y)↔∃z(Cont(z,x)∧Cont(z,y)) (contact)
(C-T4) Cont(x,y)→∀z(C(z,x)→C(z,y))
(C-A5) ¬ZEX(x)∧¬ZEX(y)∧∀z(C(z,x)→C(z,y))∧∃z(C(z,y)∧

¬C(z,x))→Cont(x,y) (C monotone implies Cont)

3.2 Dimension-dependent contact relations
The relationship between containment and dimension is sim-
ple: if y contains x, x must be of equal or lower dimension
than y. We obtain Tldc−basic = Tld ∪Tcont∪ CD-A1.
(CD-A1) Cont(x,y)→ x ≤ y

We use Tldc−basic to define three types of contact depend-
ing on the dimension of the entities and their common entity.
We distinguish two types of strong contact and one type of
weak contact. But first we define the useful notion of equi-
dimensional parthood, i.e. containment between two entities
of equal dimension. Parthood is a non-strict partial order (re-
flexive, antisymmetric, transitive) and implies contact.
(EP-D) P(x,y)↔Cont(x,y)∧ x =dim y (parthood)

Equi-dimensional strong contact: Partial overlap
Partial overlap is the strongest of our contact relations, it
holds when two regions share a part. Partial overlap is a re-
flexive and symmetric relation requiring equi-dimensionality,
it is more commonly known as O in other spatial theories.
(PO-D) PO(x,y)↔∃z(P(z,x)∧P(z,y)) (partial overlap)
(PO-T3) PO(x,y)→ x =dim y

Non-equi-dimensional strong contact: Incidence
Entities of different dimensions can also be in strong contact.
We generalize partial overlap to incidence by requiring that
the common element is an equi-dimensional part of exactly
one of them. Incidence is irreflexive, symmetric, and prevents
equi-dimensionality. INC-T4 shows its dimension constraint.

(INC-D) Inc(x,y) ↔ ∃z[Cont(z,x)∧ P(z,y)∧ z < x]∨ ∃z[P(z,x)∧
Cont(z,y)∧ z < y] (incidence)

(INC-T4) Inc(x,y)→ x < y∨ y < x

Weak contact: Superficial contact
In contrast to partial overlap and incidence, superficial con-
tact SC is a weak contact in the following sense: shared en-
tities must be of a lower dimension than both of the entities
in contact (SC-T4). SC is provably irreflexive and symmetric.
The equi-dimensional version of SC, external contact EC, is
only definable for entities of maximal dimension, i.e. with
equal dimension and codimension 0 (SC-E1).
(SC-D) SC(x,y) ↔ ∃z[Cont(z,x) ∧ Cont(z,y)] ∧ ∀z[Cont(z,x) ∧

Cont(z,y)→ z < x∧ z < y] (superficial contact)
(SC-T4) SC(x,y)→∃z(z < x∧ z < y∧Cont(z,x)∧Cont(z,y))

(SC requires a shared entity of a lower dimension)
(SC-E1) SC(x,y)∧MaxDim(x)∧MaxDim(y)→ EC(x,y) (EC)

Exhaustiveness and disjointness
It is now easily provable that the three defined relations are
jointly exhaustive, pairwise disjoint (JEPD) subrelations of
contact in Tldc = Tldc−basic∪ {EP-D,PO-D,INC-D,SC-D}:
Theorem 1. In a model M of Tldc, for all x,y ∈ dom(M),
C(x,y) iff exactly one of PO(x,y), Inc(x,y), or SC(x,y).

4 Relationship to other mereotopologies
To show that our theory is a general multidimensional me-
reotopology, we extend T 0

ldc = Tldc∪ Z-A1 so that the models
of the extension are models of (a) the INCH-calculus [Gotts,
1996] or (b) the RCC [Cohn et al., 1997]4. Essentially, T 0

ldc
together with axioms of extensionality and Boolean closures
is at least as expressive as those two mereotopologies.

4.1 INCH Calculus
The INCH calculus can be obtained by defining its sole primi-
tive INCH(x,y) (‘x includes a chunk (a part) of y’) in terms of
dimension and containment (I-D); all other relations are de-
finable while the axioms I-PA3–I-PA7 of the INCH calculus
are provable by Prover9.
(I-D) INCH(x,y)↔∃z(Cont(z,x)∧P(z,y)) (includes a chunk)

Extensionality of INCH (I-PA1, I-PA2) and the Boolean
operations sum and diff (I-PA9, I-PA10) are not provable and
must be included as axioms. I-PA8 stating that ‘x being a
chunk (equidimensional part) of y’ implies that ‘x is a con-
stituent of (contained in) y’ must also be included to pre-
vent entities of mixed dimensions, such as a disk with a spike
[Gotts, 1996]. The complete set of axioms and definitions are
available in [Hahmann & Grüninger, 2011].

We then obtain the following relationship between Tinch
and the INCH calculus denoted by the theory T ′

inch ={I-PA1–
I-PA10, I-D1–I-D9}, cf. [Hahmann & Grüninger, 2011]:
Theorem 2. T ′

inch faithfully interprets Tinch.
While I-M1 becomes provable, I-M1R is not provable.

4For these results, we use definable and faithful interpretations
between theories T,T ′ with languages L ,L ′: T ′ definably inter-
prets T iff every model M of T extends to a model M′ of T ′. The
interpretation is faithful iff valid sentences in M are valid in M′.



(I-M1) Cont(x,y)∨ZEX(x)→CS(x,y) (mapping to constituent)

(I-M1R) CS(x,y)∧¬ZEX(x)→Cont(x,y) (reverse mapping)

The converse of Thm. 2 must not only include I-M1R to
eliminate models of the INCH calculus not extendible to a
model of Tinch, but is generally weaker: some sentences con-
sistent with the INCH calculus are inconsistent with Tinch.

Theorem 3. Tinch∪ I-M1R definably interprets T ′
inch.

4.2 Equi-dimensional mereotopology (RCC)
Somewhat counter-intuitively, we cannot restrict T 0

ldc to mod-
els of equi-dimensional mereotopology by prohibiting enti-
ties of lower dimensions; otherwise ‘external contact’ in the
RCC, a special case of SC, has an empty extension by SC-T4.
This reduces the mereotopology to a pure mereology with
overlap as only contact relation. Instead, the mapping is
based on the entities of maximum dimension together with
the zero region – all guaranteed to exist in Tldc∪ D-E2 ∪
Z-A1. These regions are denoted by the set R with RP denot-
ing the parthood relation P restricted to entities in R. We then
take an indirect approach by constructing connected atom-
less Boolean contact algebras – which in turn represent RCC
models [Düntsch & Winter, 2005]. For this purpose axioms
forcing Boolean closures (intersections, sums, a universal in
R, and unique complements) together with region-extension-
ality of C are necessary so that each structure 〈R,RP〉 with
RP as partial order is a Boolean lattice. It is then sufficient to
ensure connectedness, that is SC(x,x′), and to rule out trivial
models (which are then atomless [Düntsch & Winter, 2005]).
See [Hahmann & Grüninger, 2011] for the full set of nec-
essary axioms (R-A1–R-A7) and definitions (R-D1–R-D3).
That results in the following relationship:

Theorem 4. For any model M of Tldc∪ D-E2 ∪ Z-A1 ∪
{R-D1–R-D3, R-A1–R-A7} there exists a model N of RCC
such that N is definably interpreted in M.

5 Relationship to incidence structures
We now show that our theory Tldc is also a direct abstrac-
tion of (geometric) incidence structures and in particular in-
cidence geometries. Incidence structures are weak theories
dealing with entities of varying dimensions. By showing that
Tldc is interpretable by a theory of incidence structures, we
confirm that though Tldc abstracts classical geometry, its inci-
dence relation still behaves as anticipated. In our terminology
and definitions, we follow Ch. 3 of [Buekenhout, 1995].

Definition 1. An incidence structure 〈X , I,∗, t〉 is a set X
equipped with a binary, symmetric, reflexive relation ∗ and
a surjective function t : X → I into a set of types I.

We first show that a model of T¬0
ldc = Tldc∪ NZ-A1can al-

ways be extended to a k-partite incidence structure in the fol-
lowing way: The incidence relation ∗ is defined by Inc while
the number of equivalence classes of entities of identical di-
mension determines the k in the resulting incidence structure,
that is, entities of identical dimension have identical type I.

Theorem 5. The axiomatization of the class of incidence
structures faithfully interprets the theory T¬0

ldc .

Proof. For a model M of T¬0
ldc choose X = dom(M) and define

x∗y⇔ (Inc(x,y)∨x = y in M) as the reflexive and symmetric
relation. By D-D1 dim can be defined as a function so that
dim(x) = dim(y)⇔ (x =dim y in M). dim then maps each x ∈
X to a type in I. By only including types i ∈ I with dim(x) =
i for some x ∈ X , dim becomes surjective. The so-defined
structure 〈M, I,∗,dim〉 is then an incidence structure.

The number of distinct types in I corresponds to the di-
mensionality of the space: {x ∈ dom(M)|MinDim(x)} con-
tains the entities (called flats in incidence structures) of di-
mension 0, {x ∈ dom(M)|∃y[MinDim(y)∧y≺ x]} the flats of
dimension 1, etc. Notice that members of dom(M) are not
sets, so incidence x∗y must be read as: ‘there exists an entity
contained in x and y with the dimension of either x or y’.

5.1 Incidence geometries
Now we show how the line axiom together with some ex-
istential axioms can be used to reconstruct (finite) bipartite
incidence geometries, in particular near-linear5 spaces, linear
spaces and affine spaces. For this purpose, we first define
two classes of ‘maximal’ entities which we call points, Pt,
and lines, L, and introduce the theory T¬0

pl−e = T¬0
ldc∪ {PL-A1–

PL-A5,PL-D1,PL-E1} to axiomatize their relationship:
(PL-A1) Pt(x)∧Pt(y)→ x =dim y (points are of uniform dim.)
(PL-A2) L(x)∧L(y)→ x =dim y (lines are of uniform dim.)
(PL-A3) Pt(x)∧L(y)→ x ≺ y (dim. of points lower than lines)
(PL-D1) Max(x)↔∀z[P(x,z)→ x = z] (maximal in a dim.)
(PL-A4) Pt(x)→ Max(x) (points are maximal in their dim.)
(PL-A5) L(x)→ Max(x) (lines are maximal in their dim.)
(PL-E1) L(x)→∃y,z[Pt(y)∧Pt(z)∧Cont(y,x)∧Cont(z,x)∧y 6= z]

(a line contains at least two distinct points)

Points and lines are disjoint sets of dimensionally uni-
form spatial entities that are maximal in their respective di-
mension; lines being of greater dimension than points. In
T¬0

pl−e points and lines can be interpreted in the usual geo-
metric sense but other interpretations are also feasible, e.g.,
as two-dimensional regions and four-dimensional space-time
objects. Apart from points and lines, other entities of same
or differing dimension can still exist, but are irrelevant for the
construction of line spaces as defined in [Buekenhout, 1995]:
Definition 2. A line space is a structure 〈P,L〉 of a non-empty
set of points P and a collection L of subsets of P, called lines,
with each line containing at least two distinct points.
Theorem 6. The structure 〈Pt,L〉 of a model of T¬0

pl−e is de-
finably equivalent to a line space.

Proof. Use Pt as the set of points and L = B1 as the collec-
tion of lines with B1,y ∈ B1 ⇔ L(y) and x ∈ B1,y ⇔ Pt(x)∧
Cont(x,y). By PL-E1 every set B1,y in the collection B1 must
contain at least two distinct points.

We restrict T¬0
pl−e further to obtain Tpl−nlin = T¬0

pl−e∪
NL-A1, Tpl−lin = Tpl−nlin∪ L-A1, and Tpl−a f f = Tpl−lin∪
{A-A1,A-A2}. These respectively axiomatize near-linear,
linear, and affine spaces – the (bipartite) line geometries of

5Also known as partial linear space or semi-linear space.



the geometries with the same name. Both linear and affine
spaces assume the line axiom (NL-A1 and L-A1). The FOL
axioms are direct translation of the following descriptions:

(NL-A1) Two distinct points are contained in some common line.
(L-A1) Two distinct points are contained in at most one line.
(A-A1) A point not contained in a line l is contained in a unique

line disconnected from (‘parallel to’) l.
(A-A2) Three distinct non-collinear points, i.e. which are not con-

tained in any single line, exist.

Theorem 7. Let M be a model of Tpl−nlin (Tpl−lin, Tpl−a f f )
and define x∗y⇔ [(Pt(x)∨L(x))∧(Pt(y)∨L(y))∧Inc(x,y)∨
x = y in M]. Then the structure 〈Pt,L〉 with the incidence
relation ∗ is a near-linear (linear, affine) space.

6 Betweenness
We have demonstrated that the theory of dimension and con-
tainment, Tldc, is a dimension-independent first-order axi-
omatization of mereotopology and a generalization of inci-
dence geometry. We now return to our original motivation
and propose an extension by ‘betweenness’ – a qualitative
spatial relation of relative positions that (1) avoids using im-
plied references as necessary for cardinal directions [Frank,
1996] or orientations [Freksa, 1992] and (2) avoids using ab-
solute dimensions and thus fits into our general dimension-in-
dependent approach. E.g. a point can be in between two other
points on a line; equally, a line can be in between two other
lines within a region (or on a plane). Moreover, between-
ness is commonly used in everyday descriptions of space, in
particular when describing street networks in a city. With-
out betweenness, e.g., a model of a grid network of streets
is invariant under permutations of parallel streets. Our ex-
ample in the introduction contains several cases of between-
ness: Btw6th Ave.(start, river bridge, Main St.) – read ‘on 6th
Ave., the bridge over the river is in between the starting point
and the intersection with Main St.’, Btw6th Ave.(river, Main St.,
hospital), and BtwMain St.(6th Ave., park, store). Other com-
monly used non-mereotopological spatial relations, in partic-
ular convexity (line segments, rays, half-planes) can be de-
fined in terms of betweenness if both the betweenness relation
and the incidence structure are sufficiently restricted.

Ternary betweenness relations have been studied as part
of many geometries [Hilbert, 1971; Tarski & Givant, 1999;
Veblen, 1904] and also as independent systems [Huntington
& Kline, 1917]. We use a quaternary version of Huntington’s
set of independent postulates A,B,C,D,1,2 for strict between-
ness on an undirected line, Btw(r,a,b,c) meaning ‘among
the entities contained in r, b is strictly in between a and c’.
Its intended topological interpretation is borrowed from the
Jordan-Curve-Theorem: Any continuous set (i.e. consisting
of a single connected piece) containing both a and c must in-
clude some point of b. In other words, b divides r into two
subsets – one containing a and the other containing c.

In higher-dimensional cases betweenness is not always a
total order, e.g., intersecting lines in a plane cannot be or-
dered. Therefore Tbtw = {B-A1–B-A5} omits the orderability
postulate B (cf. BMT-E1) from [Huntington & Kline, 1917].

(B-A1) Btw(r,a,b,c)→ a 6= b 6= c 6= a (strong ≡ irreflexive)

(B-A2) Btw(r,a,b,c)→ Btw(r,c,b,a) (outer symmetry)
(B-A3) Btw(r,a,b,c)→¬Btw(r,a,c,b) (strict ≡ acyclic)
(B-A4) Btw(r,x,a,b)∧Btw(r,a,b,y)→ Btw(r,x,a,y) (out. trans.)
(B-A5) Btw(r,x,a,b)∧Btw(r,a,y,b)→ Btw(r,x,a,y) (in. trans.)

Extending our mereotopology with betweenness results in
the theory Tbmt = Tldc ∪Tbtw∪ BMT-A1. By using Hunting-
ton’s postulates for linear orders, we rule out cyclic orders.
As a consequence, all spatial entities in the theory Tbmt must
be simple, that is, entities are not allowed to self-intersect or
self-connect (loop), e.g., a line cannot be a circular, other-
wise B-A3 is violated. A circular line can still be modelled
as two segments on distinct lines that meet in two points. The
modular design of our theories allows us to replace Tbtw in
the future by a weaker theory of betweenness that generalizes
partial linear orders and partial cyclic orders. Finding such an
axiomatization still remains a challenge.
(BMT-A1) Btw(r,x,y,z) → x =dim y =dim z ≺ r ∧ Cont(x,r) ∧

Cont(y,r)∧Cont(z,r) (‘betweenness’ only amongst equi-dim.
ent. contained in a common ent. of next highest dimension)

(BMT-D1) PBtw(r,x,y,z)↔ x =dim y =dim z≺ r∧∃a,b,c[P(a,x)∧
P(b,y) ∧ P(c,z) ∧ Cont(a,r) ∧ Cont(b,r) ∧ Cont(c,r)] ∧
∀a,b,c[P(a,x) ∧ P(b,y) ∧ P(c,z) ∧ Cont(a,r) ∧ Cont(b,r) ∧
Cont(c,r)→ Btw(x,a,b,c)] (betweenness amongst parts)

BMT-D1 defines a looser notion of betweenness as rela-
tionship amongst the parts contained in a higher-dimensional
entity. E.g., lines not fully contained in a region r can still
be ordered if all their parts (line segments) in r are orderable.
Other definable notions (on a line) are: (i) points between line
segments, (ii) line segments between other line segments, and
(iii) betweenness amongst lines (or segments) connected to a
common line or segment (such as streets being ordered by
their intersections with a common street).

7 Relationship to ordered geometry
Tbmt generalizes the various geometries found in the litera-
ture that are based on incidence and betweenness, such as
betweenness geometry [Hashimoto, 1958], ordered incidence
geometry, ordered affine geometry, and the theory defined by
Hilbert’s axioms of order and incidence [Hilbert, 1971]. This
is because those geometries include the axioms of Tbtw and
BMT-A1 either as axioms or entail them as theorems, while
Section 5 already established that even the weakest incidence
geometries are extensions of T¬0

pl−e and thus of Tldc. In fact,
the theory of linear spaces, Tpl−lin, is still weaker than all ge-
ometries that combine incidence and betweenness. Total or-
derability, expressed dimension-independently as BMT-E1,
is another assumption shared by those geometries. We obtain
Tbgeom = Tbmt ∪Tpl−lin∪ BMT-E1 as weakest theory common
to all the geometries that involve incidence and betweenness.
For continuous geometries BMT-E2 must also be included.
Depending on the particular geometry reconstructed, further
axioms, e.g., the Pasch or Dedekind axiom, are necessary.
(BMT-E1) x =dim y =dim z ≺ r ∧ x 6= y 6= z 6= x ∧Cont(x,r) ∧

Cont(y,r) ∧ Cont(z,r) → [Btw(r,x,y,z) ∨ Btw(r,x,z,y) ∨
Btw(r,y,x,z)] (three distinct equi-dim. entities contained

in an entity of next highest dim. are totally orderable)
(BMT-E2) Btw(r,x,y,z) → ∃s, t[s =dim t =dim x ∧ Cont(s,r) ∧

Cont(t,r)∧Btw(r,x,s,y)∧Btw(r, t,x,y)] (continuity axiom)



Tbgeom does not limit the number of distinct dimensions.
Entities of dimension k > 2 can be captured by a unary pred-
icate Lk with axioms analogous to PL-A1–PL-A5 and PL-E1
(entities in Lk must contain at least k distinct points). Sim-
ilar to the proof of Thm. 6, we can define flats of dimen-
sion k as sets Bk = {Bk,y|Lk(y)} of maximal entities with each
Bk,y ∈Bk being represented as the set of the points it contains.

8 Summary and discussion
Based on primitives of relative dimension, spatial contain-
ment, and betweenness, we have developed ‘betweenness me-
reotopology’, Tbmt , as qualitative analogue of the geometries
of incidence and betweenness without reference to absolute
dimensions. Throughout the development, we aligned sub-
theories of Tbmt with other mereotopologies, incidence ge-
ometries and finally geometries that involve both incidence
and betweenness. Altogether, it indicates that though the ba-
sic theory is fairly weak, it can be easily extended to the
strength of existing qualitative spatial theories. Tbmt com-
bines the simplicity of equi-dimensional mereotopology, the
multidimensional approach of incidence structures, and the
expressiveness of the betweenness primitive.

The theory Tbmt avoids the heavy mathematical appara-
tus usually necessary to define dimension as known from
point-set topology or classical geometry. Unlike mathematics
which necessitates rigorous definitions of dimension, when
giving qualitative directions or answering queries such as
‘what are the possible fire escape routes from a specific room
in a building?’, an undefined (and more vague) concept of rel-
ative dimension is often sufficient. The full strength of Tbmt
is probably best evaluated with respect to specific subclasses
of models such as 2D or 3D maps, e.g., of a city or of a build-
ing. Other feasible models include streets or hiking paths on
a bounded map which are essentially curves arbitrarily placed
in a plane (or any higher-dimensional space). In fact, the most
immediate use of the theory are likely qualitative abstractions
of maps for extracting human-like directions.

Finding a representation theorem for all models of Tbmt re-
mains as a challenge which will first require to identify a suit-
able class of mathematical structures capable of capturing the
models – currently at best vaguely described as ‘spaces of di-
mension m containing spatial regions of uniform dimension
n≤m composed of n-manifolds (closed or with boundaries)’.
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